Sharp Geometric Mean Bounds for Neuman Means

We find the best possible constants α1,α2,β1,β2∈[0,1/2] and α3,α4,β3,β4∈[1/2,1] such that the double inequalities G(α1a+(1-α1)b,α1b + (1-α1)a)<NAG(a,b)<G(β1a + (1-β1)b,β1b+(1-β1)a),G(α2a+(1-α2)b,α2b + (1-α2)a)<NGA(a,b)<G(β2a + (1-β2)b,β2b+(1-β2)a),Q(α3a+(1-α3)b,α3b + (1-α3)a)<NQA(a,b)...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan Zhang, Yu-Ming Chu, Yun-Liang Jiang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/949815
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849405913856737280
author Yan Zhang
Yu-Ming Chu
Yun-Liang Jiang
author_facet Yan Zhang
Yu-Ming Chu
Yun-Liang Jiang
author_sort Yan Zhang
collection DOAJ
description We find the best possible constants α1,α2,β1,β2∈[0,1/2] and α3,α4,β3,β4∈[1/2,1] such that the double inequalities G(α1a+(1-α1)b,α1b + (1-α1)a)<NAG(a,b)<G(β1a + (1-β1)b,β1b+(1-β1)a),G(α2a+(1-α2)b,α2b + (1-α2)a)<NGA(a,b)<G(β2a + (1-β2)b,β2b+(1-β2)a),Q(α3a+(1-α3)b,α3b + (1-α3)a)<NQA(a,b)<Q(β3a + (1-β3)b,β3b+(1-β3)a),Q(α4a+(1-α4)b,α4b + (1-α4)a)<NAQ(a,b)<Q(β4a + (1-β4)b,β4b+(1-β4)a) hold for all a,b>0 with a≠b, where G, A, and Q are, respectively, the geometric, arithmetic, and quadratic means and NAG, NGA, NQA, and NAQ are the Neuman means.
format Article
id doaj-art-52b059c931344eb4bee2e656d3cf0f7a
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-52b059c931344eb4bee2e656d3cf0f7a2025-08-20T03:36:34ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/949815949815Sharp Geometric Mean Bounds for Neuman MeansYan Zhang0Yu-Ming Chu1Yun-Liang Jiang2School of Mathematics and Computation Science, Hunan City University, Yiyang 413000, ChinaSchool of Mathematics and Computation Science, Hunan City University, Yiyang 413000, ChinaSchool of Information Engineering, Huzhou Teachers College, Huzhou 313000, ChinaWe find the best possible constants α1,α2,β1,β2∈[0,1/2] and α3,α4,β3,β4∈[1/2,1] such that the double inequalities G(α1a+(1-α1)b,α1b + (1-α1)a)<NAG(a,b)<G(β1a + (1-β1)b,β1b+(1-β1)a),G(α2a+(1-α2)b,α2b + (1-α2)a)<NGA(a,b)<G(β2a + (1-β2)b,β2b+(1-β2)a),Q(α3a+(1-α3)b,α3b + (1-α3)a)<NQA(a,b)<Q(β3a + (1-β3)b,β3b+(1-β3)a),Q(α4a+(1-α4)b,α4b + (1-α4)a)<NAQ(a,b)<Q(β4a + (1-β4)b,β4b+(1-β4)a) hold for all a,b>0 with a≠b, where G, A, and Q are, respectively, the geometric, arithmetic, and quadratic means and NAG, NGA, NQA, and NAQ are the Neuman means.http://dx.doi.org/10.1155/2014/949815
spellingShingle Yan Zhang
Yu-Ming Chu
Yun-Liang Jiang
Sharp Geometric Mean Bounds for Neuman Means
Abstract and Applied Analysis
title Sharp Geometric Mean Bounds for Neuman Means
title_full Sharp Geometric Mean Bounds for Neuman Means
title_fullStr Sharp Geometric Mean Bounds for Neuman Means
title_full_unstemmed Sharp Geometric Mean Bounds for Neuman Means
title_short Sharp Geometric Mean Bounds for Neuman Means
title_sort sharp geometric mean bounds for neuman means
url http://dx.doi.org/10.1155/2014/949815
work_keys_str_mv AT yanzhang sharpgeometricmeanboundsforneumanmeans
AT yumingchu sharpgeometricmeanboundsforneumanmeans
AT yunliangjiang sharpgeometricmeanboundsforneumanmeans