scMoMtF: An interpretable multitask learning framework for single-cell multi-omics data analysis.

With the rapidly development of biotechnology, it is now possible to obtain single-cell multi-omics data in the same cell. However, how to integrate and analyze these single-cell multi-omics data remains a great challenge. Herein, we introduce an interpretable multitask framework (scMoMtF) for compr...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Lan, Tongsheng Ling, Qingfeng Chen, Ruiqing Zheng, Min Li, Yi Pan
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-12-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1012679
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the rapidly development of biotechnology, it is now possible to obtain single-cell multi-omics data in the same cell. However, how to integrate and analyze these single-cell multi-omics data remains a great challenge. Herein, we introduce an interpretable multitask framework (scMoMtF) for comprehensively analyzing single-cell multi-omics data. The scMoMtF can simultaneously solve multiple key tasks of single-cell multi-omics data including dimension reduction, cell classification and data simulation. The experimental results shows that scMoMtF outperforms current state-of-the-art algorithms on these tasks. In addition, scMoMtF has interpretability which allowing researchers to gain a reliable understanding of potential biological features and mechanisms in single-cell multi-omics data.
ISSN:1553-734X
1553-7358