Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$
We investigate the following logarithmic Kirchhoff-type equation: \begin{equation*} \left(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}+V(x)u^{2}dx\right)[-\Delta u+V(x)u]=|u|^{p-2}u\ln |u|,\qquad x\in\mathbb{R}^{3}, \end{equation*} where $a,b>0$ are constants, $4<p<2^{*}=6$. Under some appropria...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2024-08-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=11094 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841533482830921728 |
---|---|
author | Wei-Long Yang Jia-Feng Liao |
author_facet | Wei-Long Yang Jia-Feng Liao |
author_sort | Wei-Long Yang |
collection | DOAJ |
description | We investigate the following logarithmic Kirchhoff-type equation:
\begin{equation*}
\left(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}+V(x)u^{2}dx\right)[-\Delta u+V(x)u]=|u|^{p-2}u\ln |u|,\qquad x\in\mathbb{R}^{3},
\end{equation*}
where $a,b>0$ are constants, $4<p<2^{*}=6$. Under some appropriate hypotheses on the potential function $V$, we prove the existence of a positive ground state solution, a ground state sign-changing solution and a sequence of solutions by using the constraint variational methods, topological degree theory, quantitative deformation lemma and symmetric mountain pass theorem. Our results complete those of Gao et al. [Appl. Math. Lett. 139(2023), 108539] with the case of $4<p<6$. |
format | Article |
id | doaj-art-52644e36190b42c6822d32e6a531b016 |
institution | Kabale University |
issn | 1417-3875 |
language | English |
publishDate | 2024-08-01 |
publisher | University of Szeged |
record_format | Article |
series | Electronic Journal of Qualitative Theory of Differential Equations |
spelling | doaj-art-52644e36190b42c6822d32e6a531b0162025-01-15T21:24:58ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752024-08-0120244211910.14232/ejqtde.2024.1.4211094Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$Wei-Long Yang0Jia-Feng LiaoChina West Normal University, Nanchong, P. R. ChinaWe investigate the following logarithmic Kirchhoff-type equation: \begin{equation*} \left(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}+V(x)u^{2}dx\right)[-\Delta u+V(x)u]=|u|^{p-2}u\ln |u|,\qquad x\in\mathbb{R}^{3}, \end{equation*} where $a,b>0$ are constants, $4<p<2^{*}=6$. Under some appropriate hypotheses on the potential function $V$, we prove the existence of a positive ground state solution, a ground state sign-changing solution and a sequence of solutions by using the constraint variational methods, topological degree theory, quantitative deformation lemma and symmetric mountain pass theorem. Our results complete those of Gao et al. [Appl. Math. Lett. 139(2023), 108539] with the case of $4<p<6$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=11094kirchhoff-type equationlogarithmic nonlinearityground state sign-changing solutionvariational methodstopological degree theory |
spellingShingle | Wei-Long Yang Jia-Feng Liao Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$ Electronic Journal of Qualitative Theory of Differential Equations kirchhoff-type equation logarithmic nonlinearity ground state sign-changing solution variational methods topological degree theory |
title | Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$ |
title_full | Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$ |
title_fullStr | Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$ |
title_full_unstemmed | Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$ |
title_short | Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$ |
title_sort | ground state sign changing solution for a logarithmic kirchhoff type equation in mathbb r 3 |
topic | kirchhoff-type equation logarithmic nonlinearity ground state sign-changing solution variational methods topological degree theory |
url | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=11094 |
work_keys_str_mv | AT weilongyang groundstatesignchangingsolutionforalogarithmickirchhofftypeequationinmathbbr3 AT jiafengliao groundstatesignchangingsolutionforalogarithmickirchhofftypeequationinmathbbr3 |