Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$

We investigate the following logarithmic Kirchhoff-type equation: \begin{equation*} \left(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}+V(x)u^{2}dx\right)[-\Delta u+V(x)u]=|u|^{p-2}u\ln |u|,\qquad x\in\mathbb{R}^{3}, \end{equation*} where $a,b>0$ are constants, $4<p<2^{*}=6$. Under some appropria...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei-Long Yang, Jia-Feng Liao
Format: Article
Language:English
Published: University of Szeged 2024-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11094
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841533482830921728
author Wei-Long Yang
Jia-Feng Liao
author_facet Wei-Long Yang
Jia-Feng Liao
author_sort Wei-Long Yang
collection DOAJ
description We investigate the following logarithmic Kirchhoff-type equation: \begin{equation*} \left(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}+V(x)u^{2}dx\right)[-\Delta u+V(x)u]=|u|^{p-2}u\ln |u|,\qquad x\in\mathbb{R}^{3}, \end{equation*} where $a,b>0$ are constants, $4<p<2^{*}=6$. Under some appropriate hypotheses on the potential function $V$, we prove the existence of a positive ground state solution, a ground state sign-changing solution and a sequence of solutions by using the constraint variational methods, topological degree theory, quantitative deformation lemma and symmetric mountain pass theorem. Our results complete those of Gao et al. [Appl. Math. Lett. 139(2023), 108539] with the case of $4<p<6$.
format Article
id doaj-art-52644e36190b42c6822d32e6a531b016
institution Kabale University
issn 1417-3875
language English
publishDate 2024-08-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj-art-52644e36190b42c6822d32e6a531b0162025-01-15T21:24:58ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752024-08-0120244211910.14232/ejqtde.2024.1.4211094Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$Wei-Long Yang0Jia-Feng LiaoChina West Normal University, Nanchong, P. R. ChinaWe investigate the following logarithmic Kirchhoff-type equation: \begin{equation*} \left(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}+V(x)u^{2}dx\right)[-\Delta u+V(x)u]=|u|^{p-2}u\ln |u|,\qquad x\in\mathbb{R}^{3}, \end{equation*} where $a,b>0$ are constants, $4<p<2^{*}=6$. Under some appropriate hypotheses on the potential function $V$, we prove the existence of a positive ground state solution, a ground state sign-changing solution and a sequence of solutions by using the constraint variational methods, topological degree theory, quantitative deformation lemma and symmetric mountain pass theorem. Our results complete those of Gao et al. [Appl. Math. Lett. 139(2023), 108539] with the case of $4<p<6$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11094kirchhoff-type equationlogarithmic nonlinearityground state sign-changing solutionvariational methodstopological degree theory
spellingShingle Wei-Long Yang
Jia-Feng Liao
Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$
Electronic Journal of Qualitative Theory of Differential Equations
kirchhoff-type equation
logarithmic nonlinearity
ground state sign-changing solution
variational methods
topological degree theory
title Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$
title_full Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$
title_fullStr Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$
title_full_unstemmed Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$
title_short Ground state sign-changing solution for a logarithmic Kirchhoff-type equation in $\mathbb{R}^{3}$
title_sort ground state sign changing solution for a logarithmic kirchhoff type equation in mathbb r 3
topic kirchhoff-type equation
logarithmic nonlinearity
ground state sign-changing solution
variational methods
topological degree theory
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11094
work_keys_str_mv AT weilongyang groundstatesignchangingsolutionforalogarithmickirchhofftypeequationinmathbbr3
AT jiafengliao groundstatesignchangingsolutionforalogarithmickirchhofftypeequationinmathbbr3