One size fits all: Enhanced zero-shot text classification for patient listening on social media

Patient-focused drug development (PFDD) represents a transformative approach that is reshaping the pharmaceutical landscape by centering on patients throughout the drug development process. Recent advancements in Artificial Intelligence (AI), especially in Natural Language Processing (NLP), have ena...

Full description

Saved in:
Bibliographic Details
Main Authors: Veton Matoshi, Maria Carmela De Vuono, Roberto Gaspari, Mark Kröll, Michael Jantscher, Sara Lucia Nicolardi, Giuseppe Mazzola, Manuela Rauch, Vedran Sabol, Eileen Salhofer, Riccardo Mariani
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-02-01
Series:Frontiers in Artificial Intelligence
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/frai.2024.1397470/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823859245161906176
author Veton Matoshi
Maria Carmela De Vuono
Roberto Gaspari
Mark Kröll
Michael Jantscher
Sara Lucia Nicolardi
Giuseppe Mazzola
Manuela Rauch
Vedran Sabol
Eileen Salhofer
Riccardo Mariani
author_facet Veton Matoshi
Maria Carmela De Vuono
Roberto Gaspari
Mark Kröll
Michael Jantscher
Sara Lucia Nicolardi
Giuseppe Mazzola
Manuela Rauch
Vedran Sabol
Eileen Salhofer
Riccardo Mariani
author_sort Veton Matoshi
collection DOAJ
description Patient-focused drug development (PFDD) represents a transformative approach that is reshaping the pharmaceutical landscape by centering on patients throughout the drug development process. Recent advancements in Artificial Intelligence (AI), especially in Natural Language Processing (NLP), have enabled the analysis of vast social media datasets, also called Social Media Listening (SML), providing insights not only into patient perspectives but also into those of other interest groups such as caregivers. In this method study, we propose an NLP framework that—given a particular disease—is designed to extract pertinent information related to three primary research topics: identification of interest groups, understanding of challenges, and assessing treatments and support systems. Leveraging external resources like ontologies and employing various NLP techniques, particularly zero-shot text classification, the presented framework yields initial meaningful insights into these research topics with minimal annotation effort.
format Article
id doaj-art-5240787792f2405a97a505b7a97d967d
institution Kabale University
issn 2624-8212
language English
publishDate 2025-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Artificial Intelligence
spelling doaj-art-5240787792f2405a97a505b7a97d967d2025-02-11T06:59:09ZengFrontiers Media S.A.Frontiers in Artificial Intelligence2624-82122025-02-01710.3389/frai.2024.13974701397470One size fits all: Enhanced zero-shot text classification for patient listening on social mediaVeton Matoshi0Maria Carmela De Vuono1Roberto Gaspari2Mark Kröll3Michael Jantscher4Sara Lucia Nicolardi5Giuseppe Mazzola6Manuela Rauch7Vedran Sabol8Eileen Salhofer9Riccardo Mariani10Independent Researcher, Graz, AustriaKnow Center Research GmbH, Graz, AustriaKnow Center Research GmbH, Graz, AustriaChiesi Farmaceutici S.p.A, Parma, ItalyChiesi Farmaceutici S.p.A, Parma, ItalyKnow Center Research GmbH, Graz, AustriaKnow Center Research GmbH, Graz, AustriaChiesi Farmaceutici S.p.A, Parma, ItalyChiesi Farmaceutici S.p.A, Parma, ItalyChiesi Farmaceutici S.p.A, Parma, ItalyKnow Center Research GmbH, Graz, AustriaPatient-focused drug development (PFDD) represents a transformative approach that is reshaping the pharmaceutical landscape by centering on patients throughout the drug development process. Recent advancements in Artificial Intelligence (AI), especially in Natural Language Processing (NLP), have enabled the analysis of vast social media datasets, also called Social Media Listening (SML), providing insights not only into patient perspectives but also into those of other interest groups such as caregivers. In this method study, we propose an NLP framework that—given a particular disease—is designed to extract pertinent information related to three primary research topics: identification of interest groups, understanding of challenges, and assessing treatments and support systems. Leveraging external resources like ontologies and employing various NLP techniques, particularly zero-shot text classification, the presented framework yields initial meaningful insights into these research topics with minimal annotation effort.https://www.frontiersin.org/articles/10.3389/frai.2024.1397470/fullpatient-focused drug developmentsocial media listeningpatient’s perspectivepatient centriczero-shot classificationnamed entity recognition
spellingShingle Veton Matoshi
Maria Carmela De Vuono
Roberto Gaspari
Mark Kröll
Michael Jantscher
Sara Lucia Nicolardi
Giuseppe Mazzola
Manuela Rauch
Vedran Sabol
Eileen Salhofer
Riccardo Mariani
One size fits all: Enhanced zero-shot text classification for patient listening on social media
Frontiers in Artificial Intelligence
patient-focused drug development
social media listening
patient’s perspective
patient centric
zero-shot classification
named entity recognition
title One size fits all: Enhanced zero-shot text classification for patient listening on social media
title_full One size fits all: Enhanced zero-shot text classification for patient listening on social media
title_fullStr One size fits all: Enhanced zero-shot text classification for patient listening on social media
title_full_unstemmed One size fits all: Enhanced zero-shot text classification for patient listening on social media
title_short One size fits all: Enhanced zero-shot text classification for patient listening on social media
title_sort one size fits all enhanced zero shot text classification for patient listening on social media
topic patient-focused drug development
social media listening
patient’s perspective
patient centric
zero-shot classification
named entity recognition
url https://www.frontiersin.org/articles/10.3389/frai.2024.1397470/full
work_keys_str_mv AT vetonmatoshi onesizefitsallenhancedzeroshottextclassificationforpatientlisteningonsocialmedia
AT mariacarmeladevuono onesizefitsallenhancedzeroshottextclassificationforpatientlisteningonsocialmedia
AT robertogaspari onesizefitsallenhancedzeroshottextclassificationforpatientlisteningonsocialmedia
AT markkroll onesizefitsallenhancedzeroshottextclassificationforpatientlisteningonsocialmedia
AT michaeljantscher onesizefitsallenhancedzeroshottextclassificationforpatientlisteningonsocialmedia
AT saralucianicolardi onesizefitsallenhancedzeroshottextclassificationforpatientlisteningonsocialmedia
AT giuseppemazzola onesizefitsallenhancedzeroshottextclassificationforpatientlisteningonsocialmedia
AT manuelarauch onesizefitsallenhancedzeroshottextclassificationforpatientlisteningonsocialmedia
AT vedransabol onesizefitsallenhancedzeroshottextclassificationforpatientlisteningonsocialmedia
AT eileensalhofer onesizefitsallenhancedzeroshottextclassificationforpatientlisteningonsocialmedia
AT riccardomariani onesizefitsallenhancedzeroshottextclassificationforpatientlisteningonsocialmedia