Digital Frequency-Domain MIMO Equalizer Enabling Six-LP-Mode Strong-Coupling IM/DD MDM Optical Transmission System

Mode division multiplexing (MDM) techniques provide significant enhancement of the capacity of optical intensity modulation and direct detection (IM/DD) short-reach communication systems, like the datacenter interconnection scenarios. While the introduction of multiple modes leads to mode coupling t...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianyu Long, Chen Wang, Ying Wu, Bohan Sang, Chengzhen Bian, Xiongwei Yang, Long Zhang, Yifan Chen, Qinyi Zhang, Ying Wang, Yichen Li, Wen Zhou, Kaihui Wang, Bo Liu, Lei Shen, Jianjun Yu
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/8/2562
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mode division multiplexing (MDM) techniques provide significant enhancement of the capacity of optical intensity modulation and direct detection (IM/DD) short-reach communication systems, like the datacenter interconnection scenarios. While the introduction of multiple modes leads to mode coupling that will extremely deteriorate the received signals, two approaches have been explored to address this issue: one involves the application of all-link weakly coupled components to suppress modal crosstalk, while the other utilizes optical multiple-input–multiple-output (MIMO) equalizers based on optical devices for signal decoupling. However, pure digital signal processing (DSP)-based schemes for mode decoupling in IM/DD MDM systems with strong mode coupling remain unexplored. In this paper, we propose to use a frequency-domain MIMO equalizer for compensating the modal interference in the strong-coupling linear-polarized (LP) MDM IM/DD system. The signal recovery capability of the proposed method is verified through numerical simulation. Finally, we successfully experimentally demonstrate the transmission of on–off-key (OOK) signals in a six-LP-mode strong-coupling MDM IM/DD system over a 10 km few-mode fiber, employing a pair of strong-coupling mode multiplexers/demultiplexers. The experimental results indicate that, with the frequency-domain MIMO equalizer, OOK signals from all modes can be recovered with an 11% hard-decision forward error correction threshold of 8.3 × <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>. The proposed method facilitated by flexible DSP software offers an alternative for short-reach communication systems and has the potential to advance the practical application of MDM techniques in the future.
ISSN:1424-8220