On a System of Equations of a Non-Newtonian Micropolar Fluid
We investigate a problem for a model of a non-Newtonian micropolar fluid coupled system. The problem has been considered in a bounded, smooth domain of R3 with Dirichlet boundary conditions. The operator stress tensor is given by τ(e(u))=[(ν+ν0M(|e(u)|2))e(u)]. To prove the existence of weak solutio...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2015/481754 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832546130578112512 |
---|---|
author | G. M. de Araújo M. A. F. de Araújo E. F. L. Lucena |
author_facet | G. M. de Araújo M. A. F. de Araújo E. F. L. Lucena |
author_sort | G. M. de Araújo |
collection | DOAJ |
description | We investigate a problem for a model of a non-Newtonian micropolar fluid coupled system. The problem has been considered in a bounded, smooth domain of R3 with Dirichlet boundary conditions. The operator stress tensor is given by τ(e(u))=[(ν+ν0M(|e(u)|2))e(u)]. To prove the existence of weak solutions we use the method of Faedo-Galerkin and compactness arguments. Uniqueness and periodicity of solutions are also considered. |
format | Article |
id | doaj-art-5200da6ced13442ca04b8968e0beb339 |
institution | Kabale University |
issn | 1110-757X 1687-0042 |
language | English |
publishDate | 2015-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Applied Mathematics |
spelling | doaj-art-5200da6ced13442ca04b8968e0beb3392025-02-03T07:23:51ZengWileyJournal of Applied Mathematics1110-757X1687-00422015-01-01201510.1155/2015/481754481754On a System of Equations of a Non-Newtonian Micropolar FluidG. M. de Araújo0M. A. F. de Araújo1E. F. L. Lucena2Instituto de Ciências Exatas e Naturais, UFPA, Rua Augusto Corrêa s/n, 66075-110 Belém, PA, BrazilDepartamento de Matematica, UFMA, Avenida dos Portugueses 1966, 65080-805 São Luís, MA, BrazilDepartamento de Matemática, UFPA, Rua Leandro Ribeiro s/n, 68600-000 Bragança, PA, BrazilWe investigate a problem for a model of a non-Newtonian micropolar fluid coupled system. The problem has been considered in a bounded, smooth domain of R3 with Dirichlet boundary conditions. The operator stress tensor is given by τ(e(u))=[(ν+ν0M(|e(u)|2))e(u)]. To prove the existence of weak solutions we use the method of Faedo-Galerkin and compactness arguments. Uniqueness and periodicity of solutions are also considered.http://dx.doi.org/10.1155/2015/481754 |
spellingShingle | G. M. de Araújo M. A. F. de Araújo E. F. L. Lucena On a System of Equations of a Non-Newtonian Micropolar Fluid Journal of Applied Mathematics |
title | On a System of Equations of a Non-Newtonian Micropolar Fluid |
title_full | On a System of Equations of a Non-Newtonian Micropolar Fluid |
title_fullStr | On a System of Equations of a Non-Newtonian Micropolar Fluid |
title_full_unstemmed | On a System of Equations of a Non-Newtonian Micropolar Fluid |
title_short | On a System of Equations of a Non-Newtonian Micropolar Fluid |
title_sort | on a system of equations of a non newtonian micropolar fluid |
url | http://dx.doi.org/10.1155/2015/481754 |
work_keys_str_mv | AT gmdearaujo onasystemofequationsofanonnewtonianmicropolarfluid AT mafdearaujo onasystemofequationsofanonnewtonianmicropolarfluid AT efllucena onasystemofequationsofanonnewtonianmicropolarfluid |