On a System of Equations of a Non-Newtonian Micropolar Fluid

We investigate a problem for a model of a non-Newtonian micropolar fluid coupled system. The problem has been considered in a bounded, smooth domain of R3 with Dirichlet boundary conditions. The operator stress tensor is given by τ(e(u))=[(ν+ν0M(|e(u)|2))e(u)]. To prove the existence of weak solutio...

Full description

Saved in:
Bibliographic Details
Main Authors: G. M. de Araújo, M. A. F. de Araújo, E. F. L. Lucena
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2015/481754
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546130578112512
author G. M. de Araújo
M. A. F. de Araújo
E. F. L. Lucena
author_facet G. M. de Araújo
M. A. F. de Araújo
E. F. L. Lucena
author_sort G. M. de Araújo
collection DOAJ
description We investigate a problem for a model of a non-Newtonian micropolar fluid coupled system. The problem has been considered in a bounded, smooth domain of R3 with Dirichlet boundary conditions. The operator stress tensor is given by τ(e(u))=[(ν+ν0M(|e(u)|2))e(u)]. To prove the existence of weak solutions we use the method of Faedo-Galerkin and compactness arguments. Uniqueness and periodicity of solutions are also considered.
format Article
id doaj-art-5200da6ced13442ca04b8968e0beb339
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-5200da6ced13442ca04b8968e0beb3392025-02-03T07:23:51ZengWileyJournal of Applied Mathematics1110-757X1687-00422015-01-01201510.1155/2015/481754481754On a System of Equations of a Non-Newtonian Micropolar FluidG. M. de Araújo0M. A. F. de Araújo1E. F. L. Lucena2Instituto de Ciências Exatas e Naturais, UFPA, Rua Augusto Corrêa s/n, 66075-110 Belém, PA, BrazilDepartamento de Matematica, UFMA, Avenida dos Portugueses 1966, 65080-805 São Luís, MA, BrazilDepartamento de Matemática, UFPA, Rua Leandro Ribeiro s/n, 68600-000 Bragança, PA, BrazilWe investigate a problem for a model of a non-Newtonian micropolar fluid coupled system. The problem has been considered in a bounded, smooth domain of R3 with Dirichlet boundary conditions. The operator stress tensor is given by τ(e(u))=[(ν+ν0M(|e(u)|2))e(u)]. To prove the existence of weak solutions we use the method of Faedo-Galerkin and compactness arguments. Uniqueness and periodicity of solutions are also considered.http://dx.doi.org/10.1155/2015/481754
spellingShingle G. M. de Araújo
M. A. F. de Araújo
E. F. L. Lucena
On a System of Equations of a Non-Newtonian Micropolar Fluid
Journal of Applied Mathematics
title On a System of Equations of a Non-Newtonian Micropolar Fluid
title_full On a System of Equations of a Non-Newtonian Micropolar Fluid
title_fullStr On a System of Equations of a Non-Newtonian Micropolar Fluid
title_full_unstemmed On a System of Equations of a Non-Newtonian Micropolar Fluid
title_short On a System of Equations of a Non-Newtonian Micropolar Fluid
title_sort on a system of equations of a non newtonian micropolar fluid
url http://dx.doi.org/10.1155/2015/481754
work_keys_str_mv AT gmdearaujo onasystemofequationsofanonnewtonianmicropolarfluid
AT mafdearaujo onasystemofequationsofanonnewtonianmicropolarfluid
AT efllucena onasystemofequationsofanonnewtonianmicropolarfluid