Simplifying drone-based aboveground carbon density measurements to support community forestry.

Community-based forest restoration has the potential to sequester large amounts of atmospheric carbon, avoid forest degradation, and support sustainable development. However, if partnered with international funders, such projects often require robust and transparent aboveground carbon measurements t...

Full description

Saved in:
Bibliographic Details
Main Authors: Ben Newport, Tristram C Hales, Joanna House, Benoit Goossens, Amaziasizamoria Jumail
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0322099
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Community-based forest restoration has the potential to sequester large amounts of atmospheric carbon, avoid forest degradation, and support sustainable development. However, if partnered with international funders, such projects often require robust and transparent aboveground carbon measurements to secure payments, and current monitoring approaches are not necessarily appropriate due to costs, scale, and complexity. The use of consumer-grade drones in combination with open source structure-from-motion photogrammetry may provide a solution. In this study, we tested the suitability of a simplified drone-based method for measuring aboveground carbon density in heavily degraded tropical forests at a 2 ha restoration site in Sabah, Malaysia, comparing our results against established field-based methods. We used structure-from-motion photogrammetry to generate canopy height models from drone imagery, and applied multiple pre-published plot-aggregate allometric equations to examine the importance of utilising regionally calibrated allometric equations. Our results suggest that this simplified method can produce aboveground carbon density measurements of a similar magnitude to field-based methods, quickly and only with a single input metric. However, there are greater levels of uncertainty in carbon density measurements due to errors associated with canopy height measurements from drones. Our findings also highlight the importance of selecting regionally calibrated allometric equations for this approach. At scales between 1 and 100 ha, drone-based methods provide an appealing option for data acquisition and carbon measurement, balancing trade-offs between accuracy, simplicity, and cost effectiveness and coinciding well with the needs of community-scale aboveground carbon measurement. Of importance, we also discuss considerations relating to the accessibility of this method for community use, beyond purchasing a drone, that must not be overlooked. Nevertheless, the method presented here lays the foundations for a simple workflow for measuring aboveground carbon density at a community scale that can be refined in future studies.
ISSN:1932-6203