Conditional generalized analytic Feynman integrals and a generalized integral equation

We use a generalized Brownian motion process to define a generalized Feynman integral and a conditional generalized Feynman integral. We then establish the existence of these integrals for various functionals. Finally we use the conditional generalized Feynman integral to derive a Schrödinger integr...

Full description

Saved in:
Bibliographic Details
Main Authors: Seung Jun Chang, Soon Ja Kang, David Skoug
Format: Article
Language:English
Published: Wiley 2000-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171200002775
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850225772825935872
author Seung Jun Chang
Soon Ja Kang
David Skoug
author_facet Seung Jun Chang
Soon Ja Kang
David Skoug
author_sort Seung Jun Chang
collection DOAJ
description We use a generalized Brownian motion process to define a generalized Feynman integral and a conditional generalized Feynman integral. We then establish the existence of these integrals for various functionals. Finally we use the conditional generalized Feynman integral to derive a Schrödinger integral equation.
format Article
id doaj-art-51bfb2ba93df4f4ea90c178a4f59ce28
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 2000-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-51bfb2ba93df4f4ea90c178a4f59ce282025-08-20T02:05:16ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252000-01-01231175977610.1155/S0161171200002775Conditional generalized analytic Feynman integrals and a generalized integral equationSeung Jun Chang0Soon Ja Kang1David Skoug2Department of Mathematics, Dankook University, Cheonan 330-714, KoreaDepartment of Mathematical Education, Chonnam National University, Kwangju 500, KoreaDepartment of Mathematics and Statistics, University of Nebraska-Lincoln, Lincoln, NE 68588-0323, USAWe use a generalized Brownian motion process to define a generalized Feynman integral and a conditional generalized Feynman integral. We then establish the existence of these integrals for various functionals. Finally we use the conditional generalized Feynman integral to derive a Schrödinger integral equation.http://dx.doi.org/10.1155/S0161171200002775Generalized Brownian motiongeneralized Feynman integralconditional generalized Feynman integralSchrödinger equation.
spellingShingle Seung Jun Chang
Soon Ja Kang
David Skoug
Conditional generalized analytic Feynman integrals and a generalized integral equation
International Journal of Mathematics and Mathematical Sciences
Generalized Brownian motion
generalized Feynman integral
conditional generalized Feynman integral
Schrödinger equation.
title Conditional generalized analytic Feynman integrals and a generalized integral equation
title_full Conditional generalized analytic Feynman integrals and a generalized integral equation
title_fullStr Conditional generalized analytic Feynman integrals and a generalized integral equation
title_full_unstemmed Conditional generalized analytic Feynman integrals and a generalized integral equation
title_short Conditional generalized analytic Feynman integrals and a generalized integral equation
title_sort conditional generalized analytic feynman integrals and a generalized integral equation
topic Generalized Brownian motion
generalized Feynman integral
conditional generalized Feynman integral
Schrödinger equation.
url http://dx.doi.org/10.1155/S0161171200002775
work_keys_str_mv AT seungjunchang conditionalgeneralizedanalyticfeynmanintegralsandageneralizedintegralequation
AT soonjakang conditionalgeneralizedanalyticfeynmanintegralsandageneralizedintegralequation
AT davidskoug conditionalgeneralizedanalyticfeynmanintegralsandageneralizedintegralequation