PLGA-PEG-PLGA Polymer: From Synthesis to Advanced Pharmaceutical Applications

This paper presents an in-depth analysis of the PLGA-PEG-PLGA polymer, focusing on its synthesis and applications in advanced drug delivery systems (DDSs). PLGA-PEG-PLGA, a triblock copolymer, gains attention due to its biodegradability, biocompatibility, and thermosensitive properties, making it su...

Full description

Saved in:
Bibliographic Details
Main Authors: Bartosz Strus, Arkadiusz Szterk
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Advances in Polymer Technology
Online Access:http://dx.doi.org/10.1155/adv/8899828
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an in-depth analysis of the PLGA-PEG-PLGA polymer, focusing on its synthesis and applications in advanced drug delivery systems (DDSs). PLGA-PEG-PLGA, a triblock copolymer, gains attention due to its biodegradability, biocompatibility, and thermosensitive properties, making it suitable for encapsulating both hydrophilic and hydrophobic compounds. The polymer’s ability to undergo sol-to-gel at body temperature allows controlled and targeted drug release, significantly enhancing the solubility of poorly soluble drugs, such as paclitaxel and irinotecan. The paper discusses the polymer’s synthesis via ring-opening polymerization (ROP) and explores its optimization using various methods, including microwave-assisted techniques and supercritical CO2. Additionally, it examines the polymer’s cytotoxicity in in vitro and in vivo studies, emphasizing its low toxicity and ability to deliver chemotherapeutic agents more effectively. The study highlights the polymer’s potential in cancer therapy, biopharmaceutical delivery, and the development of dual-sensitive drug carriers.
ISSN:1098-2329