Analisis Loyalitas Pelanggan Berbasis Model Recency, Frequency, dan Monetary (RFM) dan Decision Tree pada PT. Solo

Perkembangan bisnis alat tulis kantor dan sekolah saat ini banyak yang menjanjikan, maka banyak bermunculan pemasok baru dalam bisnis Alat Tulis Kantor dan Sekolah (ATKS). PT Solo yang bergerak di bidang bisnis ATKS harus memiliki strategi dalam setiap persaingan usaha, khususnya dalam meraih loyal...

Full description

Saved in:
Bibliographic Details
Main Authors: Basri Basri, Windu Gata, Risnandar Risnandar
Format: Article
Language:Indonesian
Published: University of Brawijaya 2020-10-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/2284
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823860723233587200
author Basri Basri
Windu Gata
Risnandar Risnandar
author_facet Basri Basri
Windu Gata
Risnandar Risnandar
author_sort Basri Basri
collection DOAJ
description Perkembangan bisnis alat tulis kantor dan sekolah saat ini banyak yang menjanjikan, maka banyak bermunculan pemasok baru dalam bisnis Alat Tulis Kantor dan Sekolah (ATKS). PT Solo yang bergerak di bidang bisnis ATKS harus memiliki strategi dalam setiap persaingan usaha, khususnya dalam meraih loyalitas pelanggan. Loyalitas pelanggan sering dipengaruhi oleh faktor jumlah aktivitas transaksi, nilai nominal transaksi, waktu transaksi di perusahaan, dan atribut outlet. Penelitian ini mengusulkan model Recency, Frequency, dan Monetary (RFM) yang dikombinasikan dengan Decision Tree. Model RFM digunakan untuk proses klasterisasi data pelanggan berdasarkan jumlah transaksi, nilai nominal transaksi, waktu transaksi, dan atribut outlet. Sedangkan Decision Tree dapat menggambarkan tingkat loyalitas pelanggan. Data transaksi dalam penelitian ini dilakukan sepanjang 1 Januari hingga 31 Desember 2018 terhadap 1.203 pelanggan dan 18.087 transaki melalui faktur pembelian. Hasil penelitian ini menunjukan bahwa state-of-the-art pada model RFM dan Decision Tree yang diusulkan lebih unggul dibandingkan hanya dengan menggunakan model RFM saja. Cluster ke-1 memiliki 860 pelanggan menghasilkan loyalitas pelanggan sedang (biru), cluster ke-2 memiliki 69 pelanggan menghasilkan loyalitas pelanggan yang tinggi (hijau), dan cluster ke-3 memiliki 274 pelanggan menghasilkan loyalitas pelanggan yang rendah (merah). Model klasterisasi RFM dan klasifikasi Decision Tree telah menghasilkan atribut outlet yang berpengaruh terhadap nilai akurasi sebesar 67,54%.   Abstract   The development of office and school stationery business at this time, many promising, so many new suppliers have sprung up in the office and school stationery business. PT Solo, which has the office and school stationery business, must have a strategy in every business competition, especially in achieving customer loyalty. Customer loyalty is often influenced by factors in the number of transaction activities, transaction nominal value, transaction time at the company, and outlet attributes. This research proposes a Recency, Frequency, and Monetary (RFM) model combined with a Decision Tree. RFM model is used to process customer data clustering based on number of transactions, transaction nominal value, transaction time, and outlet attributes. Whereas Decision Tree can describe the level of customer loyalty. Transaction data in this study were conducted from 1 January to 31 December 2018 to the 1,203 customers and 18,087 transactions through purchase invoices. The results of this study indicate that the state-of-the-art in the proposed RFM and Decision Tree models is outperform compared to only using the RFM model. Cluster 1 has 860 customers resulting in moderate customer loyalty (blue), Cluster 2 has 69 customers resulting in high customer loyalty (green), and Cluster 3 has 274 customers resulting in lower customer loyalty (red). RFM clustering model and Decision Tree classification have produced outlet attributes that affect the accuracy value of 67.54%.
format Article
id doaj-art-51a37a09dc0342e7a5aa0a778fc6d72a
institution Kabale University
issn 2355-7699
2528-6579
language Indonesian
publishDate 2020-10-01
publisher University of Brawijaya
record_format Article
series Jurnal Teknologi Informasi dan Ilmu Komputer
spelling doaj-art-51a37a09dc0342e7a5aa0a778fc6d72a2025-02-10T10:42:32ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792020-10-017510.25126/jtiik.2020752284563Analisis Loyalitas Pelanggan Berbasis Model Recency, Frequency, dan Monetary (RFM) dan Decision Tree pada PT. SoloBasri Basri0Windu Gata1Risnandar Risnandar2STMIK Nusa MandiriSTMIK Nusa MandiriPusat Penelitian Informatika-LIPI Perkembangan bisnis alat tulis kantor dan sekolah saat ini banyak yang menjanjikan, maka banyak bermunculan pemasok baru dalam bisnis Alat Tulis Kantor dan Sekolah (ATKS). PT Solo yang bergerak di bidang bisnis ATKS harus memiliki strategi dalam setiap persaingan usaha, khususnya dalam meraih loyalitas pelanggan. Loyalitas pelanggan sering dipengaruhi oleh faktor jumlah aktivitas transaksi, nilai nominal transaksi, waktu transaksi di perusahaan, dan atribut outlet. Penelitian ini mengusulkan model Recency, Frequency, dan Monetary (RFM) yang dikombinasikan dengan Decision Tree. Model RFM digunakan untuk proses klasterisasi data pelanggan berdasarkan jumlah transaksi, nilai nominal transaksi, waktu transaksi, dan atribut outlet. Sedangkan Decision Tree dapat menggambarkan tingkat loyalitas pelanggan. Data transaksi dalam penelitian ini dilakukan sepanjang 1 Januari hingga 31 Desember 2018 terhadap 1.203 pelanggan dan 18.087 transaki melalui faktur pembelian. Hasil penelitian ini menunjukan bahwa state-of-the-art pada model RFM dan Decision Tree yang diusulkan lebih unggul dibandingkan hanya dengan menggunakan model RFM saja. Cluster ke-1 memiliki 860 pelanggan menghasilkan loyalitas pelanggan sedang (biru), cluster ke-2 memiliki 69 pelanggan menghasilkan loyalitas pelanggan yang tinggi (hijau), dan cluster ke-3 memiliki 274 pelanggan menghasilkan loyalitas pelanggan yang rendah (merah). Model klasterisasi RFM dan klasifikasi Decision Tree telah menghasilkan atribut outlet yang berpengaruh terhadap nilai akurasi sebesar 67,54%.   Abstract   The development of office and school stationery business at this time, many promising, so many new suppliers have sprung up in the office and school stationery business. PT Solo, which has the office and school stationery business, must have a strategy in every business competition, especially in achieving customer loyalty. Customer loyalty is often influenced by factors in the number of transaction activities, transaction nominal value, transaction time at the company, and outlet attributes. This research proposes a Recency, Frequency, and Monetary (RFM) model combined with a Decision Tree. RFM model is used to process customer data clustering based on number of transactions, transaction nominal value, transaction time, and outlet attributes. Whereas Decision Tree can describe the level of customer loyalty. Transaction data in this study were conducted from 1 January to 31 December 2018 to the 1,203 customers and 18,087 transactions through purchase invoices. The results of this study indicate that the state-of-the-art in the proposed RFM and Decision Tree models is outperform compared to only using the RFM model. Cluster 1 has 860 customers resulting in moderate customer loyalty (blue), Cluster 2 has 69 customers resulting in high customer loyalty (green), and Cluster 3 has 274 customers resulting in lower customer loyalty (red). RFM clustering model and Decision Tree classification have produced outlet attributes that affect the accuracy value of 67.54%. https://jtiik.ub.ac.id/index.php/jtiik/article/view/2284
spellingShingle Basri Basri
Windu Gata
Risnandar Risnandar
Analisis Loyalitas Pelanggan Berbasis Model Recency, Frequency, dan Monetary (RFM) dan Decision Tree pada PT. Solo
Jurnal Teknologi Informasi dan Ilmu Komputer
title Analisis Loyalitas Pelanggan Berbasis Model Recency, Frequency, dan Monetary (RFM) dan Decision Tree pada PT. Solo
title_full Analisis Loyalitas Pelanggan Berbasis Model Recency, Frequency, dan Monetary (RFM) dan Decision Tree pada PT. Solo
title_fullStr Analisis Loyalitas Pelanggan Berbasis Model Recency, Frequency, dan Monetary (RFM) dan Decision Tree pada PT. Solo
title_full_unstemmed Analisis Loyalitas Pelanggan Berbasis Model Recency, Frequency, dan Monetary (RFM) dan Decision Tree pada PT. Solo
title_short Analisis Loyalitas Pelanggan Berbasis Model Recency, Frequency, dan Monetary (RFM) dan Decision Tree pada PT. Solo
title_sort analisis loyalitas pelanggan berbasis model recency frequency dan monetary rfm dan decision tree pada pt solo
url https://jtiik.ub.ac.id/index.php/jtiik/article/view/2284
work_keys_str_mv AT basribasri analisisloyalitaspelangganberbasismodelrecencyfrequencydanmonetaryrfmdandecisiontreepadaptsolo
AT windugata analisisloyalitaspelangganberbasismodelrecencyfrequencydanmonetaryrfmdandecisiontreepadaptsolo
AT risnandarrisnandar analisisloyalitaspelangganberbasismodelrecencyfrequencydanmonetaryrfmdandecisiontreepadaptsolo