Notch Effect on Plastic Deformation of Metallic Glass: A Numerical Study by Revised Free-Volume Theory

By means of a revised free-volume theory, the notch effect on metallic glass was systematically investigated by the numerical method. Simulations on specimens without notches demonstrated that the parameters being determined in this work could reasonably describe the strength asymmetry of tension an...

Full description

Saved in:
Bibliographic Details
Main Authors: J. F. Yan, W. J. Meng, Z. Chen, H. Guo, X. G. Yan
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2020/7872815
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By means of a revised free-volume theory, the notch effect on metallic glass was systematically investigated by the numerical method. Simulations on specimens without notches demonstrated that the parameters being determined in this work could reasonably describe the strength asymmetry of tension and compression. Moreover, four samples with different notches were used to numerically investigate the notch effect on global strength and plasticity. A better agreement could also be achieved between current simulations with existing experimental results, compared with another free-volume model. Combined with the free-volume distribution during deformation process, it was proven that the intersection of two major shear bands is the cause for the strength and plasticity enhancement found in sample with two symmetric notches. Besides, strength asymmetry between tension and compression was also found for notched samples. Compressive strengths are accordingly higher than tensile ones. Moreover, with the augment of the aspect ratio, the plasticity for specimens with two symmetric notches was found to increase firstly and then decrease afterwards.
ISSN:1687-8434
1687-8442