Lyapunov-Type Inequalities for a Conformable Fractional Boundary Value Problem of Order 3<α≤4

We establish new Lyapunov-type inequalities for the following conformable fractional boundary value problem (BVP): Tαaut+q(t)u(t)=0,  a<t<b,  u(a)=u′(a)=u′′(a)=u′′(b)=0, where Tαa is the conformable fractional derivative of order α∈(3,4] and q is a real-valued continuous function. Some applica...

Full description

Saved in:
Bibliographic Details
Main Authors: Imed Bachar, Hassan Eltayeb
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2019/4605076
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554703008825344
author Imed Bachar
Hassan Eltayeb
author_facet Imed Bachar
Hassan Eltayeb
author_sort Imed Bachar
collection DOAJ
description We establish new Lyapunov-type inequalities for the following conformable fractional boundary value problem (BVP): Tαaut+q(t)u(t)=0,  a<t<b,  u(a)=u′(a)=u′′(a)=u′′(b)=0, where Tαa is the conformable fractional derivative of order α∈(3,4] and q is a real-valued continuous function. Some applications to the corresponding eigenvalue problem are discussed.
format Article
id doaj-art-5187708d55c640398ebe6bcb56045861
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2019-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-5187708d55c640398ebe6bcb560458612025-02-03T05:50:46ZengWileyJournal of Function Spaces2314-88962314-88882019-01-01201910.1155/2019/46050764605076Lyapunov-Type Inequalities for a Conformable Fractional Boundary Value Problem of Order 3<α≤4Imed Bachar0Hassan Eltayeb1King Saud University, College of Science, Mathematics Department, P.O. Box 2455, Riyadh 11451, Saudi ArabiaKing Saud University, College of Science, Mathematics Department, P.O. Box 2455, Riyadh 11451, Saudi ArabiaWe establish new Lyapunov-type inequalities for the following conformable fractional boundary value problem (BVP): Tαaut+q(t)u(t)=0,  a<t<b,  u(a)=u′(a)=u′′(a)=u′′(b)=0, where Tαa is the conformable fractional derivative of order α∈(3,4] and q is a real-valued continuous function. Some applications to the corresponding eigenvalue problem are discussed.http://dx.doi.org/10.1155/2019/4605076
spellingShingle Imed Bachar
Hassan Eltayeb
Lyapunov-Type Inequalities for a Conformable Fractional Boundary Value Problem of Order 3<α≤4
Journal of Function Spaces
title Lyapunov-Type Inequalities for a Conformable Fractional Boundary Value Problem of Order 3<α≤4
title_full Lyapunov-Type Inequalities for a Conformable Fractional Boundary Value Problem of Order 3<α≤4
title_fullStr Lyapunov-Type Inequalities for a Conformable Fractional Boundary Value Problem of Order 3<α≤4
title_full_unstemmed Lyapunov-Type Inequalities for a Conformable Fractional Boundary Value Problem of Order 3<α≤4
title_short Lyapunov-Type Inequalities for a Conformable Fractional Boundary Value Problem of Order 3<α≤4
title_sort lyapunov type inequalities for a conformable fractional boundary value problem of order 3 α≤4
url http://dx.doi.org/10.1155/2019/4605076
work_keys_str_mv AT imedbachar lyapunovtypeinequalitiesforaconformablefractionalboundaryvalueproblemoforder3a4
AT hassaneltayeb lyapunovtypeinequalitiesforaconformablefractionalboundaryvalueproblemoforder3a4