Investigation of biometabolites and novel antimicrobial peptides derived from promising source Cordyceps militaris and effect of non-small cell lung cancer genes computationally.
Mushrooms are considered one of the safe and effective medications because they have great economic importance due to countless biological properties. Cordyceps militaris contains bioactive compounds with antioxidant, antimicrobial and anti-cancerous properties. This study was projected to analyze t...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2025-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0310103 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832540319042764800 |
---|---|
author | Muhammad Afzal Mai Abdel Haleem A Abusalah Neelum Shehzadi Muhammad Absar Naveed Ahmed Sarmir Khan Yalnaz Naseem Noshaba Mehmood Kirnpal Kaur Banga Singh |
author_facet | Muhammad Afzal Mai Abdel Haleem A Abusalah Neelum Shehzadi Muhammad Absar Naveed Ahmed Sarmir Khan Yalnaz Naseem Noshaba Mehmood Kirnpal Kaur Banga Singh |
author_sort | Muhammad Afzal |
collection | DOAJ |
description | Mushrooms are considered one of the safe and effective medications because they have great economic importance due to countless biological properties. Cordyceps militaris contains bioactive compounds with antioxidant, antimicrobial and anti-cancerous properties. This study was projected to analyze the potentials of biometabolites and to extract antimicrobial peptides and protein from the C. militaris. An in-vitro analysis of biometabolites and antimicrobial peptides was performed to investigate their pharmacological potentials followed by quantification and characterization of extracted protein. Computational analysis on non-small cell lung cancer genes (NSCLC) was performed on quantified compounds to interpret the biometabolites from C. militaris that could be potential drug candidate molecules with high specificity and potency. A total of 34 compounds representing 100% of total detected constituents identified were identified using GCMS analysis and 20 compounds using LC-MS which showed strong biological activities. FT-IR spectroscopy manifest powerful instant peaks to have different bioactive components including carboxylic acid, phenols, amines and alkanes present in methanolic extract of C. militaris. In C. militaris, higher protein concentration was observed in 70% concentration of protein extract (500 μg/ml ± 0.025). The best antioxidant activity (% Radical scavenging activity) of methanolic extracts was 80a ± 0.03, antidiabetic activity was 37 ± 0.057 and anti-inflammatory activity was 40 ± 0.021 at 12 mg/ml. Antibacterial activity for different concentrations of Cordyceps protein and methanolic extracts was significantly (p < 0.05). Indolizine, 2-(4-methylphenyl) has most binding affinity (micromolar) and optimized properties to be selected as the lead inhibitor. It interacts favorably with the active site of RET gene of NSCLC and is neuroprotective and hepatoprotective. |
format | Article |
id | doaj-art-5174a05eb42e4fc690d1fb80e6e2141b |
institution | Kabale University |
issn | 1932-6203 |
language | English |
publishDate | 2025-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj-art-5174a05eb42e4fc690d1fb80e6e2141b2025-02-05T05:31:06ZengPublic Library of Science (PLoS)PLoS ONE1932-62032025-01-01201e031010310.1371/journal.pone.0310103Investigation of biometabolites and novel antimicrobial peptides derived from promising source Cordyceps militaris and effect of non-small cell lung cancer genes computationally.Muhammad AfzalMai Abdel Haleem A AbusalahNeelum ShehzadiMuhammad AbsarNaveed AhmedSarmir KhanYalnaz NaseemNoshaba MehmoodKirnpal Kaur Banga SinghMushrooms are considered one of the safe and effective medications because they have great economic importance due to countless biological properties. Cordyceps militaris contains bioactive compounds with antioxidant, antimicrobial and anti-cancerous properties. This study was projected to analyze the potentials of biometabolites and to extract antimicrobial peptides and protein from the C. militaris. An in-vitro analysis of biometabolites and antimicrobial peptides was performed to investigate their pharmacological potentials followed by quantification and characterization of extracted protein. Computational analysis on non-small cell lung cancer genes (NSCLC) was performed on quantified compounds to interpret the biometabolites from C. militaris that could be potential drug candidate molecules with high specificity and potency. A total of 34 compounds representing 100% of total detected constituents identified were identified using GCMS analysis and 20 compounds using LC-MS which showed strong biological activities. FT-IR spectroscopy manifest powerful instant peaks to have different bioactive components including carboxylic acid, phenols, amines and alkanes present in methanolic extract of C. militaris. In C. militaris, higher protein concentration was observed in 70% concentration of protein extract (500 μg/ml ± 0.025). The best antioxidant activity (% Radical scavenging activity) of methanolic extracts was 80a ± 0.03, antidiabetic activity was 37 ± 0.057 and anti-inflammatory activity was 40 ± 0.021 at 12 mg/ml. Antibacterial activity for different concentrations of Cordyceps protein and methanolic extracts was significantly (p < 0.05). Indolizine, 2-(4-methylphenyl) has most binding affinity (micromolar) and optimized properties to be selected as the lead inhibitor. It interacts favorably with the active site of RET gene of NSCLC and is neuroprotective and hepatoprotective.https://doi.org/10.1371/journal.pone.0310103 |
spellingShingle | Muhammad Afzal Mai Abdel Haleem A Abusalah Neelum Shehzadi Muhammad Absar Naveed Ahmed Sarmir Khan Yalnaz Naseem Noshaba Mehmood Kirnpal Kaur Banga Singh Investigation of biometabolites and novel antimicrobial peptides derived from promising source Cordyceps militaris and effect of non-small cell lung cancer genes computationally. PLoS ONE |
title | Investigation of biometabolites and novel antimicrobial peptides derived from promising source Cordyceps militaris and effect of non-small cell lung cancer genes computationally. |
title_full | Investigation of biometabolites and novel antimicrobial peptides derived from promising source Cordyceps militaris and effect of non-small cell lung cancer genes computationally. |
title_fullStr | Investigation of biometabolites and novel antimicrobial peptides derived from promising source Cordyceps militaris and effect of non-small cell lung cancer genes computationally. |
title_full_unstemmed | Investigation of biometabolites and novel antimicrobial peptides derived from promising source Cordyceps militaris and effect of non-small cell lung cancer genes computationally. |
title_short | Investigation of biometabolites and novel antimicrobial peptides derived from promising source Cordyceps militaris and effect of non-small cell lung cancer genes computationally. |
title_sort | investigation of biometabolites and novel antimicrobial peptides derived from promising source cordyceps militaris and effect of non small cell lung cancer genes computationally |
url | https://doi.org/10.1371/journal.pone.0310103 |
work_keys_str_mv | AT muhammadafzal investigationofbiometabolitesandnovelantimicrobialpeptidesderivedfrompromisingsourcecordycepsmilitarisandeffectofnonsmallcelllungcancergenescomputationally AT maiabdelhaleemaabusalah investigationofbiometabolitesandnovelantimicrobialpeptidesderivedfrompromisingsourcecordycepsmilitarisandeffectofnonsmallcelllungcancergenescomputationally AT neelumshehzadi investigationofbiometabolitesandnovelantimicrobialpeptidesderivedfrompromisingsourcecordycepsmilitarisandeffectofnonsmallcelllungcancergenescomputationally AT muhammadabsar investigationofbiometabolitesandnovelantimicrobialpeptidesderivedfrompromisingsourcecordycepsmilitarisandeffectofnonsmallcelllungcancergenescomputationally AT naveedahmed investigationofbiometabolitesandnovelantimicrobialpeptidesderivedfrompromisingsourcecordycepsmilitarisandeffectofnonsmallcelllungcancergenescomputationally AT sarmirkhan investigationofbiometabolitesandnovelantimicrobialpeptidesderivedfrompromisingsourcecordycepsmilitarisandeffectofnonsmallcelllungcancergenescomputationally AT yalnaznaseem investigationofbiometabolitesandnovelantimicrobialpeptidesderivedfrompromisingsourcecordycepsmilitarisandeffectofnonsmallcelllungcancergenescomputationally AT noshabamehmood investigationofbiometabolitesandnovelantimicrobialpeptidesderivedfrompromisingsourcecordycepsmilitarisandeffectofnonsmallcelllungcancergenescomputationally AT kirnpalkaurbangasingh investigationofbiometabolitesandnovelantimicrobialpeptidesderivedfrompromisingsourcecordycepsmilitarisandeffectofnonsmallcelllungcancergenescomputationally |