Bessel–Riesz Operator in Variable Lebesgue Spaces <i>L<sup>p</sup></i><sup>(·)</sup>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>)

This paper investigates the Bessel–Riesz operator within the framework of variable Lebesgue spaces. We extend existing results by establishing boundedness under more general conditions. The analysis is based on the Hardy–Littlewood maximal function, Hölder’s inequality, and dyadic decomposition tech...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Nasir, Fehaid Salem Alshammari, Ali Raza
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/6/429
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849418352306421760
author Muhammad Nasir
Fehaid Salem Alshammari
Ali Raza
author_facet Muhammad Nasir
Fehaid Salem Alshammari
Ali Raza
author_sort Muhammad Nasir
collection DOAJ
description This paper investigates the Bessel–Riesz operator within the framework of variable Lebesgue spaces. We extend existing results by establishing boundedness under more general conditions. The analysis is based on the Hardy–Littlewood maximal function, Hölder’s inequality, and dyadic decomposition techniques. For a given domain space, we construct a suitable range space such that the operator remains bounded. Conversely, for a prescribed range space, we identify a corresponding domain space that guarantees boundedness. Illustrative examples are included to demonstrate the construction of such spaces. The main results hold when the essential infimum of the exponent function exceeds one, and we also establish weak-type estimates in the limiting case.
format Article
id doaj-art-514d7eb78e7f4a088bd23799b9225f8c
institution Kabale University
issn 2075-1680
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-514d7eb78e7f4a088bd23799b9225f8c2025-08-20T03:32:27ZengMDPI AGAxioms2075-16802025-05-0114642910.3390/axioms14060429Bessel–Riesz Operator in Variable Lebesgue Spaces <i>L<sup>p</sup></i><sup>(·)</sup>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>)Muhammad Nasir0Fehaid Salem Alshammari1Ali Raza2Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New Muslim Town, Lahore 54600, PakistanDepartment of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi ArabiaAbdus Salam School of Mathematical Sciences, Government College University, 68-B, New Muslim Town, Lahore 54600, PakistanThis paper investigates the Bessel–Riesz operator within the framework of variable Lebesgue spaces. We extend existing results by establishing boundedness under more general conditions. The analysis is based on the Hardy–Littlewood maximal function, Hölder’s inequality, and dyadic decomposition techniques. For a given domain space, we construct a suitable range space such that the operator remains bounded. Conversely, for a prescribed range space, we identify a corresponding domain space that guarantees boundedness. Illustrative examples are included to demonstrate the construction of such spaces. The main results hold when the essential infimum of the exponent function exceeds one, and we also establish weak-type estimates in the limiting case.https://www.mdpi.com/2075-1680/14/6/429Bessel–Riesz operatorHardy–Littlewood maximal operatorvariable Lebesgue spaces
spellingShingle Muhammad Nasir
Fehaid Salem Alshammari
Ali Raza
Bessel–Riesz Operator in Variable Lebesgue Spaces <i>L<sup>p</sup></i><sup>(·)</sup>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>)
Axioms
Bessel–Riesz operator
Hardy–Littlewood maximal operator
variable Lebesgue spaces
title Bessel–Riesz Operator in Variable Lebesgue Spaces <i>L<sup>p</sup></i><sup>(·)</sup>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>)
title_full Bessel–Riesz Operator in Variable Lebesgue Spaces <i>L<sup>p</sup></i><sup>(·)</sup>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>)
title_fullStr Bessel–Riesz Operator in Variable Lebesgue Spaces <i>L<sup>p</sup></i><sup>(·)</sup>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>)
title_full_unstemmed Bessel–Riesz Operator in Variable Lebesgue Spaces <i>L<sup>p</sup></i><sup>(·)</sup>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>)
title_short Bessel–Riesz Operator in Variable Lebesgue Spaces <i>L<sup>p</sup></i><sup>(·)</sup>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>)
title_sort bessel riesz operator in variable lebesgue spaces i l sup p sup i sup · sup inline formula math display inline semantics mrow msub mi mathvariant double struck r mi mo mo msub mrow semantics math inline formula
topic Bessel–Riesz operator
Hardy–Littlewood maximal operator
variable Lebesgue spaces
url https://www.mdpi.com/2075-1680/14/6/429
work_keys_str_mv AT muhammadnasir besselrieszoperatorinvariablelebesguespacesilsuppsupisupsupinlineformulamathdisplayinlinesemanticsmrowmsubmimathvariantdoublestruckrmimomomsubmrowsemanticsmathinlineformula
AT fehaidsalemalshammari besselrieszoperatorinvariablelebesguespacesilsuppsupisupsupinlineformulamathdisplayinlinesemanticsmrowmsubmimathvariantdoublestruckrmimomomsubmrowsemanticsmathinlineformula
AT aliraza besselrieszoperatorinvariablelebesguespacesilsuppsupisupsupinlineformulamathdisplayinlinesemanticsmrowmsubmimathvariantdoublestruckrmimomomsubmrowsemanticsmathinlineformula