A Review of Polyhydroxyalkanoates: Characterization, Production, and Application from Waste

The search for alternatives to petrochemical plastics has intensified, with increasing attention being directed toward bio-based polymers (bioplastics), which are considered healthier and more environmentally friendly options. In this review, a comprehensive overview of polyhydroxyalkanoates (PHAs)...

Full description

Saved in:
Bibliographic Details
Main Authors: Luis Getino, José Luis Martín, Alejandro Chamizo-Ampudia
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/12/10/2028
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The search for alternatives to petrochemical plastics has intensified, with increasing attention being directed toward bio-based polymers (bioplastics), which are considered healthier and more environmentally friendly options. In this review, a comprehensive overview of polyhydroxyalkanoates (PHAs) is provided, including their characterization, applications, and the mechanisms underlying their biosynthesis. PHAs are natural polyesters produced by a wide range of prokaryotic and some eukaryotic organisms, positioning them as a significant and widely studied type of bioplastic. Various strategies for the production of PHAs from agroindustrial waste, such as cacao shells, cheese whey, wine, wood, and beet molasses, are reviewed, emphasizing their potential as sustainable feedstocks. Industrial production processes for PHAs, including the complexities associated with extraction and purification, are also examined. Although the use of waste materials offers promise in reducing costs and environmental impact, challenges remain in optimizing these processes to enhance efficiency and cost-effectiveness. The need for continued research and development to improve the sustainability and economic viability of PHA production is emphasized, positioning PHAs as a viable and eco-friendly alternative to conventional petroleum-based plastics.
ISSN:2076-2607