Multifractal Characteristics of Grain Size Distributions in Braided Delta-Front: A Case of Paleogene Enping Formation in Huilu Low Uplift, Pearl River Mouth Basin, South China Sea
Multifractal analysis has been used in the exploration of soil grain size distributions (GSDs) in environmental and agricultural research. However, multifractal studies regarding the GSDs of sediments in braided delta-front are currently scarce. Open-source software designed for the realization of t...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Fractal and Fractional |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2504-3110/9/4/216 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Multifractal analysis has been used in the exploration of soil grain size distributions (GSDs) in environmental and agricultural research. However, multifractal studies regarding the GSDs of sediments in braided delta-front are currently scarce. Open-source software designed for the realization of this technique has not yet been programmed. In this paper, the multifractal parameters of 61 GSDs from braided delta-front in the Paleogene Enping Formation in Huilu Low Uplift, Pearl River Mouth basin, are calculated and compared with traditional parameters. Multifractal generalized dimension spectrum curves are sigmoidal and decrease monotonically. Multifractal singularity spectrum curves are asymmetric, convex, and right-hook unimodal. The entropy dimension and singularity spectrum width ranges of silt-mudstones and gravelly sandstones are wider than those of fine and medium-coarse sandstones. The symmetry degree scopes from different lithologies are concentrated in distinguishing intervals. With the increase of grain sizes, the symmetry degree decreases overall. Both the symmetry degree and mean of GSDs are effective to distinguish the different lithologies from various depositional environments. A flexible and easy-to-use MATLAB (2021b)<sup>®</sup> GUI (graphic user interface) package, MfGSD (Multifractal of GSD, V1.0), is provided to perform multifractal analysis on sediment GSDs. After raw GSDs imported into MfGSD, multifractal parameters are batch calculated and graphed in the interface. Then, all multifractal parameters can be exported to an Excel file, including entropy dimension, singularity spectrum, correlation dimension, symmetry degree of multifractal spectrum, etc. MfGSD is effective, and the multifractal parameters outputted from MfGSD are helpful to distinguish depositional environments of GSDs. MfGSD is open-source software that can be used to explore GSDs from various kinds of depositional environments, including water or wind deposits. |
|---|---|
| ISSN: | 2504-3110 |