Exciton-Resonance-Enhanced Two-Photon Absorption in Three-Dimensional Hybrid Organic–Inorganic Perovskites
Three-dimensional (3D) hybrid organic–inorganic perovskites (HOIPs) have attracted tremendous interest due to strong excitonic effects and large optical nonlinearities. Taking the advantages, 3D HOIPs show great potential for applications in excitonic and nonlinear devices. However, understanding th...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Photonics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-6732/12/3/261 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Three-dimensional (3D) hybrid organic–inorganic perovskites (HOIPs) have attracted tremendous interest due to strong excitonic effects and large optical nonlinearities. Taking the advantages, 3D HOIPs show great potential for applications in excitonic and nonlinear devices. However, understanding the relevant mechanisms of exciton-associated nonlinear optical phenomena in 3D perovskites is still challenging. Here, we apply the quantum perturbation theory to calculate the exciton-associated degenerate 2PA spectra of 3D HOIPs. The calculated 2PA spectra of twelve 3D HOIPs are predicted to exhibit resonance peaks at both the sub-band and band edges. The exciton-resonance-associated 2PA coefficients are at least one order of magnitude larger than those of band-to-band transitions and are comparable to those of low-dimensional perovskites. To validate our model, we carried out measurements of the static light-intensity-dependent transmission on MAPbBr<sub>3</sub> single crystals. Enhancements of 2PA coefficients are predicted theoretically and observed experimentally with a resonant peak at 1100 nm, indicating intrinsic two-photon transitions to excitonic states in MAPbBr<sub>3</sub> single crystals. |
|---|---|
| ISSN: | 2304-6732 |