Machine learning approaches for mapping and predicting landslide-prone areas in São Sebastião (Southeast Brazil)
This study employs machine learning techniques to map and predict landslide-prone areas in São Sebastião, Brazil, a region susceptible to landslides due to its steep terrain and intense rainfall. We compared five algorithms: Random Forest, Gradient Boosting, Support Vector Machine, Artificial Neural...
Saved in:
| Main Authors: | Enner Alcântara, Cheila Flávia Baião, Yasmim Carvalho Guimarães, José Roberto Mantovani, José Antonio Marengo |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
KeAi Communications Co. Ltd.
2025-06-01
|
| Series: | Natural Hazards Research |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2666592124000751 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Climate change-induced shifts in landslide susceptibility in São Sebastião (southeastern Brazil)
by: Enner Alcântara, et al.
Published: (2025-06-01) -
Os Temporais e a Catástrofe em São Sebastião - SP no Carnaval de 2023
by: Wanderley Messias da Costa
Published: (2023-03-01) -
Nutrientes, séston e biomassa fitoplanctônica na plataforma interna de São Sebastião - verão de 1994 e primavera de 1997
by: Sônia Gianesella, et al.
Published: (2018-07-01) -
Proposta de Patrimônio Alimentar no Mercado São Sebastião, em Fortaleza (CE): registrar para não desaparecer
by: Ana Paola Vasconcelos Campelo, et al.
Published: (2025-01-01) -
Um rio, uma cidade: caminhos que se cruzam – São Sebastião do Caí (RS) = A river, a city: crossed paths – São Sebastião do Caí (RS)
by: Magalhães, Magna Lima
Published: (2020-01-01)