Learning exactly linearizable deep dynamics models

Research on control using models based on machine-learning methods has now shifted to the practical engineering stage. Achieving high performance and theoretically guaranteeing the safety of the system is critical for such applications. In this paper, we propose a learning method for exactly lineari...

Full description

Saved in:
Bibliographic Details
Main Authors: Ryuta Moriyasu, Masayuki Kusunoki, Kenji Kashima
Format: Article
Language:English
Published: Taylor & Francis Group 2025-12-01
Series:SICE Journal of Control, Measurement, and System Integration
Subjects:
Online Access:http://dx.doi.org/10.1080/18824889.2025.2459429
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Research on control using models based on machine-learning methods has now shifted to the practical engineering stage. Achieving high performance and theoretically guaranteeing the safety of the system is critical for such applications. In this paper, we propose a learning method for exactly linearizable dynamical models that can easily apply various control theories to ensure stability, reliability, etc., and to provide a high degree of freedom of expression. As an example, we present a design that combines simple linear control and control barrier functions. The proposed model is employed for the real-time control of an automotive engine, and the results demonstrate good predictive performance and stable control under constraints.
ISSN:1884-9970