Quantum dot molecular beacons achieve sub-10 pM CRISPR-Cas detection in field-ready assays
Abstract CRISPR-Cas systems have revolutionized molecular diagnostics through their specificity and programmability, yet their broad adoption is hindered by the reliance on expensive and complex instrumentation. Here, we present an optimized quantum dot (QD) molecular beacon (QD-MB) platform that in...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-09434-9 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849763805822713856 |
|---|---|
| author | Drew P. Lysne Michael H. Stewart Kimihiro Susumu Tomasz A. Leski David A. Stenger Igor L. Medintz Sebastián A. Díaz Christopher M. Green |
| author_facet | Drew P. Lysne Michael H. Stewart Kimihiro Susumu Tomasz A. Leski David A. Stenger Igor L. Medintz Sebastián A. Díaz Christopher M. Green |
| author_sort | Drew P. Lysne |
| collection | DOAJ |
| description | Abstract CRISPR-Cas systems have revolutionized molecular diagnostics through their specificity and programmability, yet their broad adoption is hindered by the reliance on expensive and complex instrumentation. Here, we present an optimized quantum dot (QD) molecular beacon (QD-MB) platform that integrates Förster resonance energy transfer (FRET)-based detection with CRISPR-Cas functionality, achieving sub-picomolar sensitivity without the need for target amplification. By systematically tuning components, including His-tag modifications for improved QD conjugation, nucleic acid hairpin structures for enhanced enzyme interaction, and QD surface passivation strategies, we demonstrate a two-order-of-magnitude improvement in detection sensitivity. Using LwaCas13a and RNA targets, the limit of detection (LOD) decreased to under 1 pM with plate-reader-based fluorescence measurements and below 10 pM with a lamp-and-smartphone setup, establishing the feasibility of portable, field-ready applications. This work highlights the transformative potential of QD-MBs in biosensing and sets a foundation for further advances in CRISPR-based diagnostics and nanotechnology-enabled sensing platforms. |
| format | Article |
| id | doaj-art-4f7a1ce476934be2b85fcf1edad7dfcf |
| institution | DOAJ |
| issn | 2045-2322 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Scientific Reports |
| spelling | doaj-art-4f7a1ce476934be2b85fcf1edad7dfcf2025-08-20T03:05:18ZengNature PortfolioScientific Reports2045-23222025-07-0115111110.1038/s41598-025-09434-9Quantum dot molecular beacons achieve sub-10 pM CRISPR-Cas detection in field-ready assaysDrew P. Lysne0Michael H. Stewart1Kimihiro Susumu2Tomasz A. Leski3David A. Stenger4Igor L. Medintz5Sebastián A. Díaz6Christopher M. Green7National Research CouncilU.S. Naval Research Laboratory, Optical Sciences DivisionU.S. Naval Research Laboratory, Optical Sciences DivisionU.S. Naval Research Laboratory, Center for Bio/Molecular Science and EngineeringU.S. Naval Research Laboratory, Center for Bio/Molecular Science and EngineeringU.S. Naval Research Laboratory, Center for Bio/Molecular Science and EngineeringU.S. Naval Research Laboratory, Center for Bio/Molecular Science and EngineeringU.S. Naval Research Laboratory, Center for Bio/Molecular Science and EngineeringAbstract CRISPR-Cas systems have revolutionized molecular diagnostics through their specificity and programmability, yet their broad adoption is hindered by the reliance on expensive and complex instrumentation. Here, we present an optimized quantum dot (QD) molecular beacon (QD-MB) platform that integrates Förster resonance energy transfer (FRET)-based detection with CRISPR-Cas functionality, achieving sub-picomolar sensitivity without the need for target amplification. By systematically tuning components, including His-tag modifications for improved QD conjugation, nucleic acid hairpin structures for enhanced enzyme interaction, and QD surface passivation strategies, we demonstrate a two-order-of-magnitude improvement in detection sensitivity. Using LwaCas13a and RNA targets, the limit of detection (LOD) decreased to under 1 pM with plate-reader-based fluorescence measurements and below 10 pM with a lamp-and-smartphone setup, establishing the feasibility of portable, field-ready applications. This work highlights the transformative potential of QD-MBs in biosensing and sets a foundation for further advances in CRISPR-based diagnostics and nanotechnology-enabled sensing platforms.https://doi.org/10.1038/s41598-025-09434-9CRISPR/CasMolecular beaconsQuantum dotsFörster resonance energy transferCell-phone detection |
| spellingShingle | Drew P. Lysne Michael H. Stewart Kimihiro Susumu Tomasz A. Leski David A. Stenger Igor L. Medintz Sebastián A. Díaz Christopher M. Green Quantum dot molecular beacons achieve sub-10 pM CRISPR-Cas detection in field-ready assays Scientific Reports CRISPR/Cas Molecular beacons Quantum dots Förster resonance energy transfer Cell-phone detection |
| title | Quantum dot molecular beacons achieve sub-10 pM CRISPR-Cas detection in field-ready assays |
| title_full | Quantum dot molecular beacons achieve sub-10 pM CRISPR-Cas detection in field-ready assays |
| title_fullStr | Quantum dot molecular beacons achieve sub-10 pM CRISPR-Cas detection in field-ready assays |
| title_full_unstemmed | Quantum dot molecular beacons achieve sub-10 pM CRISPR-Cas detection in field-ready assays |
| title_short | Quantum dot molecular beacons achieve sub-10 pM CRISPR-Cas detection in field-ready assays |
| title_sort | quantum dot molecular beacons achieve sub 10 pm crispr cas detection in field ready assays |
| topic | CRISPR/Cas Molecular beacons Quantum dots Förster resonance energy transfer Cell-phone detection |
| url | https://doi.org/10.1038/s41598-025-09434-9 |
| work_keys_str_mv | AT drewplysne quantumdotmolecularbeaconsachievesub10pmcrisprcasdetectioninfieldreadyassays AT michaelhstewart quantumdotmolecularbeaconsachievesub10pmcrisprcasdetectioninfieldreadyassays AT kimihirosusumu quantumdotmolecularbeaconsachievesub10pmcrisprcasdetectioninfieldreadyassays AT tomaszaleski quantumdotmolecularbeaconsachievesub10pmcrisprcasdetectioninfieldreadyassays AT davidastenger quantumdotmolecularbeaconsachievesub10pmcrisprcasdetectioninfieldreadyassays AT igorlmedintz quantumdotmolecularbeaconsachievesub10pmcrisprcasdetectioninfieldreadyassays AT sebastianadiaz quantumdotmolecularbeaconsachievesub10pmcrisprcasdetectioninfieldreadyassays AT christophermgreen quantumdotmolecularbeaconsachievesub10pmcrisprcasdetectioninfieldreadyassays |