TOPSIS Method Based on Entropy Measure for Solving Multiple-Attribute Group Decision-Making Problems with Spherical Fuzzy Soft Information

A spherical fuzzy soft set (SFSS) is a generalized soft set model, which is more sensible, practical, and exact. Being a very natural generalization, introducing uncertainty measures of SFSSs seems to be very important. In this paper, the concept of entropy, similarity, and distance measures are def...

Full description

Saved in:
Bibliographic Details
Main Authors: Perveen P. A. Fathima, Sunil Jacob John, T. Baiju
Format: Article
Language:English
Published: Wiley 2023-01-01
Series:Applied Computational Intelligence and Soft Computing
Online Access:http://dx.doi.org/10.1155/2023/7927541
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A spherical fuzzy soft set (SFSS) is a generalized soft set model, which is more sensible, practical, and exact. Being a very natural generalization, introducing uncertainty measures of SFSSs seems to be very important. In this paper, the concept of entropy, similarity, and distance measures are defined for the SFSSs and also, a characterization of spherical fuzzy soft entropy is proposed. Further, the relationship between entropy and similarity measures as well as entropy and distance measures are discussed in detail. As an application, an algorithm is proposed based on the improved technique for order preference by similarity to an ideal solution (TOPSIS) and the proposed entropy measure of SFSSs, to solve the multiple attribute group decision-making problems. Finally, an illustrative example is used to prove the effectiveness of the recommended algorithm.
ISSN:1687-9732