Research on the Microstructure, Mechanical Properties and Strengthening Mechanism of Nanocrystalline Al-Mo Alloy Films

In this work, the Al-Mo nanocrystalline alloy films with Mo contents ranging from 0–10.5 at.% were prepared via magnetron co-sputtering technology. The composition and microstructure of alloy thin films were studied using XRD, TEM, and EDS. The mechanical behaviors were tested through nanoindentatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying Wang, Huanqing Xu, Yulan Chen, Xiaoben Qi, Ning Zhong
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/14/24/1990
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850036149238628352
author Ying Wang
Huanqing Xu
Yulan Chen
Xiaoben Qi
Ning Zhong
author_facet Ying Wang
Huanqing Xu
Yulan Chen
Xiaoben Qi
Ning Zhong
author_sort Ying Wang
collection DOAJ
description In this work, the Al-Mo nanocrystalline alloy films with Mo contents ranging from 0–10.5 at.% were prepared via magnetron co-sputtering technology. The composition and microstructure of alloy thin films were studied using XRD, TEM, and EDS. The mechanical behaviors were tested through nanoindentation. The weights of each strengthening factor were calculated and the strengthening mechanism of alloy thin films was revealed. The results indicate that a portion of Mo atoms exist in the Al lattice, forming a solid solution of Mo in Al. The other part of Mo atoms tends to segregate at the grain boundaries, and this segregation becomes more pronounced with an increase in Mo content. There are no compounds or second phases present in any alloy films. As the Mo element content increases, the grain size of the alloy films gradually decreases. The hardness of pure aluminum film is 2.2 GPa. The hardness increases with an increase in Mo content. When the Mo content is 10.5 at.%, The hardness of the film increases to a maximum value of 4.9 GPa. The fine grain (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>g</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>), solid solution (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>), and nanocrystalline solute pinning (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mi>c</mi><mo>,</mo><mi>s</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>) are the three main reasons for the increase in the hardness of alloy thin films. The contribution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>g</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> is the largest, accounting for over 60% of the total, while the contribution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> accounts for about 30%, ranking second. The rest of the increase is due to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mi>c</mi><mo>,</mo><mi>s</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>.
format Article
id doaj-art-4eebaf0c45924eaea0eecc59c103097c
institution DOAJ
issn 2079-4991
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj-art-4eebaf0c45924eaea0eecc59c103097c2025-08-20T02:57:17ZengMDPI AGNanomaterials2079-49912024-12-011424199010.3390/nano14241990Research on the Microstructure, Mechanical Properties and Strengthening Mechanism of Nanocrystalline Al-Mo Alloy FilmsYing Wang0Huanqing Xu1Yulan Chen2Xiaoben Qi3Ning Zhong4School of Materials Science, Shanghai Dianji University, Shanghai 201306, ChinaSchool of Materials Science, Shanghai Dianji University, Shanghai 201306, ChinaSchool of Materials Science, Shanghai Dianji University, Shanghai 201306, ChinaSchool of Materials Science, Shanghai Dianji University, Shanghai 201306, ChinaCollege of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, ChinaIn this work, the Al-Mo nanocrystalline alloy films with Mo contents ranging from 0–10.5 at.% were prepared via magnetron co-sputtering technology. The composition and microstructure of alloy thin films were studied using XRD, TEM, and EDS. The mechanical behaviors were tested through nanoindentation. The weights of each strengthening factor were calculated and the strengthening mechanism of alloy thin films was revealed. The results indicate that a portion of Mo atoms exist in the Al lattice, forming a solid solution of Mo in Al. The other part of Mo atoms tends to segregate at the grain boundaries, and this segregation becomes more pronounced with an increase in Mo content. There are no compounds or second phases present in any alloy films. As the Mo element content increases, the grain size of the alloy films gradually decreases. The hardness of pure aluminum film is 2.2 GPa. The hardness increases with an increase in Mo content. When the Mo content is 10.5 at.%, The hardness of the film increases to a maximum value of 4.9 GPa. The fine grain (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>g</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula>), solid solution (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>), and nanocrystalline solute pinning (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mi>c</mi><mo>,</mo><mi>s</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>) are the three main reasons for the increase in the hardness of alloy thin films. The contribution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>g</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> is the largest, accounting for over 60% of the total, while the contribution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> accounts for about 30%, ranking second. The rest of the increase is due to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mi>c</mi><mo>,</mo><mi>s</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2079-4991/14/24/1990nanocrystallineAl-Mo alloy filmmicrostructuremechanical propertiesstrengthening mechanism
spellingShingle Ying Wang
Huanqing Xu
Yulan Chen
Xiaoben Qi
Ning Zhong
Research on the Microstructure, Mechanical Properties and Strengthening Mechanism of Nanocrystalline Al-Mo Alloy Films
Nanomaterials
nanocrystalline
Al-Mo alloy film
microstructure
mechanical properties
strengthening mechanism
title Research on the Microstructure, Mechanical Properties and Strengthening Mechanism of Nanocrystalline Al-Mo Alloy Films
title_full Research on the Microstructure, Mechanical Properties and Strengthening Mechanism of Nanocrystalline Al-Mo Alloy Films
title_fullStr Research on the Microstructure, Mechanical Properties and Strengthening Mechanism of Nanocrystalline Al-Mo Alloy Films
title_full_unstemmed Research on the Microstructure, Mechanical Properties and Strengthening Mechanism of Nanocrystalline Al-Mo Alloy Films
title_short Research on the Microstructure, Mechanical Properties and Strengthening Mechanism of Nanocrystalline Al-Mo Alloy Films
title_sort research on the microstructure mechanical properties and strengthening mechanism of nanocrystalline al mo alloy films
topic nanocrystalline
Al-Mo alloy film
microstructure
mechanical properties
strengthening mechanism
url https://www.mdpi.com/2079-4991/14/24/1990
work_keys_str_mv AT yingwang researchonthemicrostructuremechanicalpropertiesandstrengtheningmechanismofnanocrystallinealmoalloyfilms
AT huanqingxu researchonthemicrostructuremechanicalpropertiesandstrengtheningmechanismofnanocrystallinealmoalloyfilms
AT yulanchen researchonthemicrostructuremechanicalpropertiesandstrengtheningmechanismofnanocrystallinealmoalloyfilms
AT xiaobenqi researchonthemicrostructuremechanicalpropertiesandstrengtheningmechanismofnanocrystallinealmoalloyfilms
AT ningzhong researchonthemicrostructuremechanicalpropertiesandstrengtheningmechanismofnanocrystallinealmoalloyfilms