Impact of monthly air pollution and weather conditions on cardiorespiratory mortality in Portuguese Metropolitan Areas

Abstract This study analyses cardiorespiratory mortality rates (CARDIO) and their association with air pollutants - particulate matter with aerodynamic diameters lower of equal to 10 or 2.5 (µm) (PM10, PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3) - and meteorological variables (t...

Full description

Saved in:
Bibliographic Details
Main Authors: Ediclê de Souza Fernandes Duarte, Paulo Sérgio Lucio, Lígia Henriques-Rodrigues, Maria João Costa
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-88473-8
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study analyses cardiorespiratory mortality rates (CARDIO) and their association with air pollutants - particulate matter with aerodynamic diameters lower of equal to 10 or 2.5 (µm) (PM10, PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3) - and meteorological variables (temperature, humidity, wind speed, direction) in the Lisbon (LMA) and Porto (PMA) metropolitan areas from 2011 to 2020. Monthly analyses reveal regional patterns and seasonal variations. The results show that PMA had a higher average CARDIO rate (202.94 [Deaths per 100 000]) compared to LMA (169.70 [Deaths per 100 000]). Linear and Poisson regression, contingency tables, correspondence analysis and Pearson’s chi-squared tests confirmed significant associations between low temperature and wind speeds, high pollutant concentrations, and increased mortality. Lower temperature (≤ 13 [°C]) and wind speed (≤ 2.5 [m/s]) were consistently associated with increased CARDIO in both regions. High pollutant levels, particularly PM10 (≥ 24 [µg/m³]) and NO2 (≥ 24 [µg/m³]), were also associated with higher CARDIO rates. Additionally, high PM2.5 and CO levels were linked to increased CARDIO in LMA. The seasonal Mann-Kendall test showed no significant trend in CARDIO for LMA, but a statically significant increasing trend of 2.14 [Deaths per 100 000]) per month for PMA. This study shows the importance of mid-term exposure standards and emphasises the need for multifactorial assessments of air quality and meteorological impacts on health, as regional differences in pollutant dynamics and meteorological conditions may significantly impact cardiorespiratory mortality in urban areas.
ISSN:2045-2322