High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection
Balanced homodyne detection, which offers advantages that include low noise and strong anti-interference capabilities, is commonly used as a detection method in quantum metrology. In this article, we propose application of the balanced homodyne detection technique to the gas sensing and measurement...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/11/3519 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850160962813820928 |
|---|---|
| author | Yanan Miao Fang Xie Wentao Feng Yifeng Zhu Xun Zhang Fang Liu |
| author_facet | Yanan Miao Fang Xie Wentao Feng Yifeng Zhu Xun Zhang Fang Liu |
| author_sort | Yanan Miao |
| collection | DOAJ |
| description | Balanced homodyne detection, which offers advantages that include low noise and strong anti-interference capabilities, is commonly used as a detection method in quantum metrology. In this article, we propose application of the balanced homodyne detection technique to the gas sensing and measurement field. By constructing a Mach–Zehnder interferometer based on balanced homodyne detection, we realize high-precision measurement of the refractive index of air. The device exhibits interference efficiency of 99% and a common-mode rejection ratio of 40 dB, thus enabling dynamic monitoring of optical phase changes. Under conditions that include a stabilized temperature of 25 °C, atmospheric pressure of 100.08 kPa, and relative humidity of 30%, the refractive index of air was measured experimentally to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>1.0002711</mn></mrow></semantics></math></inline-formula> with a measured minimum standard deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula>. The proposed technique provides high measurement sensitivity and stability, and it also offers the advantage of noncontact measurement. Furthermore, the proposed scheme is applicable to both measurement and dynamic sensing of the refractive indices of gases, along with sensing and measurement of transparent liquids and biological samples. |
| format | Article |
| id | doaj-art-4e5f7c94817e4d8d8a975b0cd7053aaf |
| institution | OA Journals |
| issn | 1424-8220 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Sensors |
| spelling | doaj-art-4e5f7c94817e4d8d8a975b0cd7053aaf2025-08-20T02:23:00ZengMDPI AGSensors1424-82202025-06-012511351910.3390/s25113519High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne DetectionYanan Miao0Fang Xie1Wentao Feng2Yifeng Zhu3Xun Zhang4Fang Liu5Department of Physics, Nanjing Tech University, Nanjing 211816, ChinaDepartment of Physics, Nanjing Tech University, Nanjing 211816, ChinaDepartment of Physics, Nanjing Tech University, Nanjing 211816, ChinaDepartment of Physics, Nanjing Tech University, Nanjing 211816, ChinaDepartment of Physics, Nanjing Tech University, Nanjing 211816, ChinaDepartment of Physics, Nanjing Tech University, Nanjing 211816, ChinaBalanced homodyne detection, which offers advantages that include low noise and strong anti-interference capabilities, is commonly used as a detection method in quantum metrology. In this article, we propose application of the balanced homodyne detection technique to the gas sensing and measurement field. By constructing a Mach–Zehnder interferometer based on balanced homodyne detection, we realize high-precision measurement of the refractive index of air. The device exhibits interference efficiency of 99% and a common-mode rejection ratio of 40 dB, thus enabling dynamic monitoring of optical phase changes. Under conditions that include a stabilized temperature of 25 °C, atmospheric pressure of 100.08 kPa, and relative humidity of 30%, the refractive index of air was measured experimentally to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>1.0002711</mn></mrow></semantics></math></inline-formula> with a measured minimum standard deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula>. The proposed technique provides high measurement sensitivity and stability, and it also offers the advantage of noncontact measurement. Furthermore, the proposed scheme is applicable to both measurement and dynamic sensing of the refractive indices of gases, along with sensing and measurement of transparent liquids and biological samples.https://www.mdpi.com/1424-8220/25/11/3519homodyne detectionMach–Zehnder interferometrygas sensingair refractive index |
| spellingShingle | Yanan Miao Fang Xie Wentao Feng Yifeng Zhu Xun Zhang Fang Liu High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection Sensors homodyne detection Mach–Zehnder interferometry gas sensing air refractive index |
| title | High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection |
| title_full | High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection |
| title_fullStr | High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection |
| title_full_unstemmed | High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection |
| title_short | High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection |
| title_sort | high precision interferometric measurements of gas refractive index using homodyne detection |
| topic | homodyne detection Mach–Zehnder interferometry gas sensing air refractive index |
| url | https://www.mdpi.com/1424-8220/25/11/3519 |
| work_keys_str_mv | AT yananmiao highprecisioninterferometricmeasurementsofgasrefractiveindexusinghomodynedetection AT fangxie highprecisioninterferometricmeasurementsofgasrefractiveindexusinghomodynedetection AT wentaofeng highprecisioninterferometricmeasurementsofgasrefractiveindexusinghomodynedetection AT yifengzhu highprecisioninterferometricmeasurementsofgasrefractiveindexusinghomodynedetection AT xunzhang highprecisioninterferometricmeasurementsofgasrefractiveindexusinghomodynedetection AT fangliu highprecisioninterferometricmeasurementsofgasrefractiveindexusinghomodynedetection |