Motion Tape Strain During Trunk Muscle Engagement in Young, Healthy Participants
Background: Motion Tape (MT) is a low-profile, disposable, self-adhesive wearable sensor that measures skin strain. Preliminary studies have validated MT for measuring lower back movement. However, further analysis is needed to determine if MT can be used to measure lower back muscle engagement. The...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-10-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/24/21/6933 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850062441112666112 |
|---|---|
| author | Spencer Spiegel Elijah Wyckoff Jay Barolo Audrey Lee Emilia Farcas Job Godino Kevin Patrick Kenneth J. Loh Sara P. Gombatto |
| author_facet | Spencer Spiegel Elijah Wyckoff Jay Barolo Audrey Lee Emilia Farcas Job Godino Kevin Patrick Kenneth J. Loh Sara P. Gombatto |
| author_sort | Spencer Spiegel |
| collection | DOAJ |
| description | Background: Motion Tape (MT) is a low-profile, disposable, self-adhesive wearable sensor that measures skin strain. Preliminary studies have validated MT for measuring lower back movement. However, further analysis is needed to determine if MT can be used to measure lower back muscle engagement. The purpose of this study was to measure differences in MT strain between conditions in which the lower back muscles were relaxed versus maximally activated. Methods: Ten participants without low back pain were tested. A matrix of six MTs was placed on the lower back, and strain data were captured under a series of conditions. The first condition was a baseline trial, in which participants lay prone and the muscles of the lower back were relaxed. The subsequent trials were maximum voluntary isometric contractions (MVICs), in which participants did not move, but resisted the examiner force in extension or rotational directions to maximally engage their lower back muscles. The mean MT strain was calculated for each condition. A repeated measures ANOVA was conducted to analyze the effects of conditions (baseline, extension, right rotation, and left rotation) and MT position (1–6) on the MT strain. Post hoc analyses were conducted for significant effects from the overall analysis. Results: The results of the ANOVA revealed a significant main effect of condition (<i>p</i> < 0.001) and a significant interaction effect of sensor and condition (<i>p</i> = 0.01). There were significant differences in MT strain between the baseline condition and the extension and rotation MVIC conditions, respectively, for sensors 4, 5, and 6 (<i>p</i> = 0.01–0.04). The largest differences in MT strain were observed between baseline and rotation conditions for sensors 4, 5, and 6. Conclusions: MT can capture maximal lower back muscle engagement while the trunk remains in a stationary position. Lower sensors are better able to capture muscle engagement than upper sensors. Furthermore, MT captured muscle engagement during rotation conditions better than during extension. |
| format | Article |
| id | doaj-art-4e5a3f5ecde64cdab882467aa19c08b3 |
| institution | DOAJ |
| issn | 1424-8220 |
| language | English |
| publishDate | 2024-10-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Sensors |
| spelling | doaj-art-4e5a3f5ecde64cdab882467aa19c08b32025-08-20T02:49:55ZengMDPI AGSensors1424-82202024-10-012421693310.3390/s24216933Motion Tape Strain During Trunk Muscle Engagement in Young, Healthy ParticipantsSpencer Spiegel0Elijah Wyckoff1Jay Barolo2Audrey Lee3Emilia Farcas4Job Godino5Kevin Patrick6Kenneth J. Loh7Sara P. Gombatto8Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USADepartment of Structural Engineering, University of California San Diego, La Jolla, CA 92093, USASchool of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USADepartment of Bioengineering, San Diego State University, San Diego, CA 92182, USAQualcomm Institute, University of California San Diego, La Jolla, CA 92093, USAQualcomm Institute, University of California San Diego, La Jolla, CA 92093, USAQualcomm Institute, University of California San Diego, La Jolla, CA 92093, USADepartment of Structural Engineering, University of California San Diego, La Jolla, CA 92093, USASchool of Physical Therapy, San Diego State University, San Diego, CA 92182, USABackground: Motion Tape (MT) is a low-profile, disposable, self-adhesive wearable sensor that measures skin strain. Preliminary studies have validated MT for measuring lower back movement. However, further analysis is needed to determine if MT can be used to measure lower back muscle engagement. The purpose of this study was to measure differences in MT strain between conditions in which the lower back muscles were relaxed versus maximally activated. Methods: Ten participants without low back pain were tested. A matrix of six MTs was placed on the lower back, and strain data were captured under a series of conditions. The first condition was a baseline trial, in which participants lay prone and the muscles of the lower back were relaxed. The subsequent trials were maximum voluntary isometric contractions (MVICs), in which participants did not move, but resisted the examiner force in extension or rotational directions to maximally engage their lower back muscles. The mean MT strain was calculated for each condition. A repeated measures ANOVA was conducted to analyze the effects of conditions (baseline, extension, right rotation, and left rotation) and MT position (1–6) on the MT strain. Post hoc analyses were conducted for significant effects from the overall analysis. Results: The results of the ANOVA revealed a significant main effect of condition (<i>p</i> < 0.001) and a significant interaction effect of sensor and condition (<i>p</i> = 0.01). There were significant differences in MT strain between the baseline condition and the extension and rotation MVIC conditions, respectively, for sensors 4, 5, and 6 (<i>p</i> = 0.01–0.04). The largest differences in MT strain were observed between baseline and rotation conditions for sensors 4, 5, and 6. Conclusions: MT can capture maximal lower back muscle engagement while the trunk remains in a stationary position. Lower sensors are better able to capture muscle engagement than upper sensors. Furthermore, MT captured muscle engagement during rotation conditions better than during extension.https://www.mdpi.com/1424-8220/24/21/6933sensorwearablebody-worn sensorsnanocompositetextilelow back |
| spellingShingle | Spencer Spiegel Elijah Wyckoff Jay Barolo Audrey Lee Emilia Farcas Job Godino Kevin Patrick Kenneth J. Loh Sara P. Gombatto Motion Tape Strain During Trunk Muscle Engagement in Young, Healthy Participants Sensors sensor wearable body-worn sensors nanocomposite textile low back |
| title | Motion Tape Strain During Trunk Muscle Engagement in Young, Healthy Participants |
| title_full | Motion Tape Strain During Trunk Muscle Engagement in Young, Healthy Participants |
| title_fullStr | Motion Tape Strain During Trunk Muscle Engagement in Young, Healthy Participants |
| title_full_unstemmed | Motion Tape Strain During Trunk Muscle Engagement in Young, Healthy Participants |
| title_short | Motion Tape Strain During Trunk Muscle Engagement in Young, Healthy Participants |
| title_sort | motion tape strain during trunk muscle engagement in young healthy participants |
| topic | sensor wearable body-worn sensors nanocomposite textile low back |
| url | https://www.mdpi.com/1424-8220/24/21/6933 |
| work_keys_str_mv | AT spencerspiegel motiontapestrainduringtrunkmuscleengagementinyounghealthyparticipants AT elijahwyckoff motiontapestrainduringtrunkmuscleengagementinyounghealthyparticipants AT jaybarolo motiontapestrainduringtrunkmuscleengagementinyounghealthyparticipants AT audreylee motiontapestrainduringtrunkmuscleengagementinyounghealthyparticipants AT emiliafarcas motiontapestrainduringtrunkmuscleengagementinyounghealthyparticipants AT jobgodino motiontapestrainduringtrunkmuscleengagementinyounghealthyparticipants AT kevinpatrick motiontapestrainduringtrunkmuscleengagementinyounghealthyparticipants AT kennethjloh motiontapestrainduringtrunkmuscleengagementinyounghealthyparticipants AT sarapgombatto motiontapestrainduringtrunkmuscleengagementinyounghealthyparticipants |