Synthesis and Characterization of CeO2-SiO2 Nanoparticles by Microwave-Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue Dye

CeO2-SiO2 nanoparticles were synthesized for the first time by a facile microwave-assisted irradiation process. The effect of irradiation time of microwave was studied. The materials were characterized by N2 adsorption, XRD, UV-vis/DR, and TEM. All solids showed mesoporous textures with high surface...

Full description

Saved in:
Bibliographic Details
Main Authors: R. M. Mohamed, E. S. Aazam
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2012/928760
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564747723079680
author R. M. Mohamed
E. S. Aazam
author_facet R. M. Mohamed
E. S. Aazam
author_sort R. M. Mohamed
collection DOAJ
description CeO2-SiO2 nanoparticles were synthesized for the first time by a facile microwave-assisted irradiation process. The effect of irradiation time of microwave was studied. The materials were characterized by N2 adsorption, XRD, UV-vis/DR, and TEM. All solids showed mesoporous textures with high surface areas, relatively small pore size diameters, and large pore volume. The X-ray diffraction results indicated that the as-synthesized nanoparticles exhibited cubic CeO2 without impurities and amorphous silica. The transmission electron microscopy (TEM) images revealed that the particle size of CeO2-SiO2 nanoparticles, which were prepared by microwave method for 30 min irradiation times, was around 8 nm. The photocatalytic activities were evaluated by the decomposition of methylene blue dye under UV light irradiations. The results showed that the irradiation under the microwave produced CeO2-SiO2 nanoparticles, which have the best crystallinity under a shorter irradiation time. This indicates that the introduction of the microwave really can save energy and time with faster kinetics of crystallization. The sample prepared by 30 min microwave irradiation time exhibited the highest photocatalytic activity. The photocatalytic activity of CeO2-SiO2 nanoparticles, which were prepared by 30 min irradiation times was found to have better performance than commercial reference P25.
format Article
id doaj-art-4e52c43655a544c8b87396646755757f
institution Kabale University
issn 1110-662X
1687-529X
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series International Journal of Photoenergy
spelling doaj-art-4e52c43655a544c8b87396646755757f2025-02-03T01:10:16ZengWileyInternational Journal of Photoenergy1110-662X1687-529X2012-01-01201210.1155/2012/928760928760Synthesis and Characterization of CeO2-SiO2 Nanoparticles by Microwave-Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue DyeR. M. Mohamed0E. S. Aazam1Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaChemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaCeO2-SiO2 nanoparticles were synthesized for the first time by a facile microwave-assisted irradiation process. The effect of irradiation time of microwave was studied. The materials were characterized by N2 adsorption, XRD, UV-vis/DR, and TEM. All solids showed mesoporous textures with high surface areas, relatively small pore size diameters, and large pore volume. The X-ray diffraction results indicated that the as-synthesized nanoparticles exhibited cubic CeO2 without impurities and amorphous silica. The transmission electron microscopy (TEM) images revealed that the particle size of CeO2-SiO2 nanoparticles, which were prepared by microwave method for 30 min irradiation times, was around 8 nm. The photocatalytic activities were evaluated by the decomposition of methylene blue dye under UV light irradiations. The results showed that the irradiation under the microwave produced CeO2-SiO2 nanoparticles, which have the best crystallinity under a shorter irradiation time. This indicates that the introduction of the microwave really can save energy and time with faster kinetics of crystallization. The sample prepared by 30 min microwave irradiation time exhibited the highest photocatalytic activity. The photocatalytic activity of CeO2-SiO2 nanoparticles, which were prepared by 30 min irradiation times was found to have better performance than commercial reference P25.http://dx.doi.org/10.1155/2012/928760
spellingShingle R. M. Mohamed
E. S. Aazam
Synthesis and Characterization of CeO2-SiO2 Nanoparticles by Microwave-Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue Dye
International Journal of Photoenergy
title Synthesis and Characterization of CeO2-SiO2 Nanoparticles by Microwave-Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue Dye
title_full Synthesis and Characterization of CeO2-SiO2 Nanoparticles by Microwave-Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue Dye
title_fullStr Synthesis and Characterization of CeO2-SiO2 Nanoparticles by Microwave-Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue Dye
title_full_unstemmed Synthesis and Characterization of CeO2-SiO2 Nanoparticles by Microwave-Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue Dye
title_short Synthesis and Characterization of CeO2-SiO2 Nanoparticles by Microwave-Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue Dye
title_sort synthesis and characterization of ceo2 sio2 nanoparticles by microwave assisted irradiation method for photocatalytic oxidation of methylene blue dye
url http://dx.doi.org/10.1155/2012/928760
work_keys_str_mv AT rmmohamed synthesisandcharacterizationofceo2sio2nanoparticlesbymicrowaveassistedirradiationmethodforphotocatalyticoxidationofmethylenebluedye
AT esaazam synthesisandcharacterizationofceo2sio2nanoparticlesbymicrowaveassistedirradiationmethodforphotocatalyticoxidationofmethylenebluedye