Quantum origin of anomalous Floquet phases in cavity-QED materials
Abstract Anomalous Floquet topological phases are unique to periodically driven systems, lacking a static analog. Inspired by Floquet Engineering with classical electromagnetic radiation, Quantum Floquet Engineering has emerged as a promising tool to tailor the properties of quantum materials using...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-12-01
|
| Series: | Communications Physics |
| Online Access: | https://doi.org/10.1038/s42005-024-01908-y |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Anomalous Floquet topological phases are unique to periodically driven systems, lacking a static analog. Inspired by Floquet Engineering with classical electromagnetic radiation, Quantum Floquet Engineering has emerged as a promising tool to tailor the properties of quantum materials using quantum light. While the latter recovers the physics of Floquet materials in its semi-classical limit, the mapping between these two scenarios remains mysterious in many aspects. In this work, we discuss the emergence of quantum anomalous topological phases in cavity-QED materials, linking the topological phase transitions in the electron-photon spectrum with those in the 0- and π-gaps of Floquet quasienergies. Our results establish the microscopic origin of an emergent discrete time-translation symmetry in the matter sector, and link isolated c-QED materials with periodically driven ones. Finally, we discuss the bulk-edge correspondence in terms of hybrid light-matter topological invariants. |
|---|---|
| ISSN: | 2399-3650 |