Symmetric Responses to Diet by Plumage Carotenoids in Violet-Sensitive Piciform–Coraciiform Birds

Biological studies on symmetry can be expanded to consider red (longer wavelengths) and blue (shorter wavelengths) shifts as antisymmetries (opposite-pattern symmetries), which may arise from similar underlying causes (invariant process symmetries). In this context, classic shift asymmetries of redd...

Full description

Saved in:
Bibliographic Details
Main Author: Robert Bleiweiss
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Diversity
Subjects:
Online Access:https://www.mdpi.com/1424-2818/17/6/379
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biological studies on symmetry can be expanded to consider red (longer wavelengths) and blue (shorter wavelengths) shifts as antisymmetries (opposite-pattern symmetries), which may arise from similar underlying causes (invariant process symmetries). In this context, classic shift asymmetries of redder plumage in response to higher dietary carotenoids appear conceptually incomplete, as potential blue-shifted counterparts were not considered. A latent symmetric response is highlighted by recent evidence showing that the maximum absorbance bands of various colorful plumage pigments are red-shifted in birds with ultraviolet-sensitive (UVS) color vision but blue-shifted in those with violet-sensitive (VS) color vision. Blue-shifted responses to increased dietary carotenoid contents may also be underestimated, as relevant studies have focused on species-rich but uniformly UVS Passerida passerines. This study explored the relationship between pattern–process symmetries and diets of VS Piciformes–Coraciiformes by gauging the responses of their plumage reflectance to a modified diet index (Diet<sub>c</sub>), where the overall rank carotenoid contents of food items were weight-averaged by three levels of importance in a species’ diet. In the case of both sexes, the main long-wavelength reflectance band for the three carotenoid-based pigment classes defined the same graded series of blue shifts in response to higher Diet<sub>c</sub>. Yellow showed a strong absolute (negative slope) blue shift, orange showed a weaker absolute blue shift, and red exhibited only a blue shift (flat, non-significant slope) relative to absolute red shifts (positive slope). The secondary shorter-wavelength reflectance band was also unresponsive to Diet<sub>c</sub> in the VS Piciformes–Coraciiformes (relative blue shift) compared with earlier evidence for it decreasing (absolute red shift) at higher Diet<sub>c</sub> in UVS species. Results for the intervening minimum reflectance (maximum absorbance) band were intermediate between those for the other reflectance bands. No pigment class monopolized lower or higher Diet<sub>c</sub>, but red was less variable overall. Phylogenetic independence, sexually similar responses, and specimen preservation reinforced characterizations. A review of avian perceptual studies suggested that VS models discriminate yellows and oranges extremely well, consistent with the importance of the corresponding carotenoids as Diet<sub>c</sub> indicators. Both UVS and VS species appear to produce putatively more costly and possibly beneficial carotenoid metabolites and/or concentrations in response to higher Diet<sub>c</sub>, supporting underlying invariant processes in relation to carotenoid limitations and honest signaling despite opposite plumage shifts and their different chemical bases. In symmetry parlance, pigment classes (red) or wavebands (short) that lack responses to Diet<sub>c</sub> suggest broken pattern and process symmetry. The biology of VS Piciformes–Coraciiformes may favor such exceptions owing to selection for visual resemblance and tuning specializations, although universal constraints on physical and chemical properties of (particularly red) carotenoids may favor certain functional tendencies. Thus, symmetry principles organize carotenoid diversity into a simplified and predictive framework linked to color vision.
ISSN:1424-2818