Dynamic Large Deflection Response of RC Beams under Low-Speed Impact Loading

The dynamic large deflection response of RC beams under low-speed impact loading at their midspan is investigated in this paper. Two simple methods such as extended Hamilton’s principle and equivalent static hypothesis are used to establish the theoretical models for both simply supported and fully...

Full description

Saved in:
Bibliographic Details
Main Authors: Lu Guo, Renwei Mao, Zhifang Liu, Shiqiang Li, Guiying Wu, Zhihua Wang
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/8812890
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dynamic large deflection response of RC beams under low-speed impact loading at their midspan is investigated in this paper. Two simple methods such as extended Hamilton’s principle and equivalent static hypothesis are used to establish the theoretical models for both simply supported and fully clamped RC beams; analytical formulas for the maximum midspan deflection-input impact energy are obtained. The “equal area” method based on the deflection history of beams is only used during these derivations to determine the plastic bending moment and the stress distribution of the structure. Then, finite element simulations are carried out to verify the validity of the proposed predictions. It is shown that the maximum deflections for both simply supported and fully clamped beams are almost proportional with respect to the input impact energy, which agrees well with both simulations and other experimental results. Also, the boundary condition has more effect on the deflection response of the RC beams which is relatively longer.
ISSN:1070-9622
1875-9203