Efficiency of Thermoremanent Magnetization Acquisition in Vortex‐State Particle Assemblies

Abstract Magmatic rocks record ambient magnetic fields during cooling, preserving them for billions of years through thermoremanent magnetization (TRM). TRM accuracy depends on particle size, shape, magnetic properties, and the number of particles available to record the field. While traditionally i...

Full description

Saved in:
Bibliographic Details
Main Authors: U. D. Bellon, W. Williams, A. R. Muxworthy, G. F. Souza‐Junior, L. Nagy, L. Uieda, R. I. F. Trindade
Format: Article
Language:English
Published: Wiley 2025-04-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2025GL114771
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849387729525145600
author U. D. Bellon
W. Williams
A. R. Muxworthy
G. F. Souza‐Junior
L. Nagy
L. Uieda
R. I. F. Trindade
author_facet U. D. Bellon
W. Williams
A. R. Muxworthy
G. F. Souza‐Junior
L. Nagy
L. Uieda
R. I. F. Trindade
author_sort U. D. Bellon
collection DOAJ
description Abstract Magmatic rocks record ambient magnetic fields during cooling, preserving them for billions of years through thermoremanent magnetization (TRM). TRM accuracy depends on particle size, shape, magnetic properties, and the number of particles available to record the field. While traditionally interpreted via Neél's single‐domain theory, most particles exist in a vortex state, where complex magnetic structures require numerical modeling. We show that in fields >10μT, a few thousand nanoscopic vortex‐state particles can record TRM with less than 1° error, regardless of shape. For weaker fields, morphology plays a crucial role, with spherical and oblate particles performing best. These findings challenge assumptions about particle requirements for faithful TRM recording and highlight the influence of grain shape in paleomagnetic studies. Our results justify using smaller geological samples and magnetic microscopy to reconstruct ancient magnetic fields with precision.
format Article
id doaj-art-4d59b64dcd0a481e900887d060638fbf
institution Kabale University
issn 0094-8276
1944-8007
language English
publishDate 2025-04-01
publisher Wiley
record_format Article
series Geophysical Research Letters
spelling doaj-art-4d59b64dcd0a481e900887d060638fbf2025-08-20T03:44:25ZengWileyGeophysical Research Letters0094-82761944-80072025-04-01528n/an/a10.1029/2025GL114771Efficiency of Thermoremanent Magnetization Acquisition in Vortex‐State Particle AssembliesU. D. Bellon0W. Williams1A. R. Muxworthy2G. F. Souza‐Junior3L. Nagy4L. Uieda5R. I. F. Trindade6School of Geosciences University of Edinburgh Edinburgh UKSchool of Geosciences University of Edinburgh Edinburgh UKDepartment of Earth Science and Engineering Imperial College London London UKDepartment of Geophysics Institute of Astronomy Geophysics and Atmospheric Sciences (IAG) University of São Paulo São Paulo BrazilSchool of Environmental Sciences University of Liverpool Liverpool UKDepartment of Geophysics Institute of Astronomy Geophysics and Atmospheric Sciences (IAG) University of São Paulo São Paulo BrazilDepartment of Geophysics Institute of Astronomy Geophysics and Atmospheric Sciences (IAG) University of São Paulo São Paulo BrazilAbstract Magmatic rocks record ambient magnetic fields during cooling, preserving them for billions of years through thermoremanent magnetization (TRM). TRM accuracy depends on particle size, shape, magnetic properties, and the number of particles available to record the field. While traditionally interpreted via Neél's single‐domain theory, most particles exist in a vortex state, where complex magnetic structures require numerical modeling. We show that in fields >10μT, a few thousand nanoscopic vortex‐state particles can record TRM with less than 1° error, regardless of shape. For weaker fields, morphology plays a crucial role, with spherical and oblate particles performing best. These findings challenge assumptions about particle requirements for faithful TRM recording and highlight the influence of grain shape in paleomagnetic studies. Our results justify using smaller geological samples and magnetic microscopy to reconstruct ancient magnetic fields with precision.https://doi.org/10.1029/2025GL114771magnetic mineralogythermoremanencemicromagnetic modelingpaleomagnetismnatural remanent magnetizationvortex‐state
spellingShingle U. D. Bellon
W. Williams
A. R. Muxworthy
G. F. Souza‐Junior
L. Nagy
L. Uieda
R. I. F. Trindade
Efficiency of Thermoremanent Magnetization Acquisition in Vortex‐State Particle Assemblies
Geophysical Research Letters
magnetic mineralogy
thermoremanence
micromagnetic modeling
paleomagnetism
natural remanent magnetization
vortex‐state
title Efficiency of Thermoremanent Magnetization Acquisition in Vortex‐State Particle Assemblies
title_full Efficiency of Thermoremanent Magnetization Acquisition in Vortex‐State Particle Assemblies
title_fullStr Efficiency of Thermoremanent Magnetization Acquisition in Vortex‐State Particle Assemblies
title_full_unstemmed Efficiency of Thermoremanent Magnetization Acquisition in Vortex‐State Particle Assemblies
title_short Efficiency of Thermoremanent Magnetization Acquisition in Vortex‐State Particle Assemblies
title_sort efficiency of thermoremanent magnetization acquisition in vortex state particle assemblies
topic magnetic mineralogy
thermoremanence
micromagnetic modeling
paleomagnetism
natural remanent magnetization
vortex‐state
url https://doi.org/10.1029/2025GL114771
work_keys_str_mv AT udbellon efficiencyofthermoremanentmagnetizationacquisitioninvortexstateparticleassemblies
AT wwilliams efficiencyofthermoremanentmagnetizationacquisitioninvortexstateparticleassemblies
AT armuxworthy efficiencyofthermoremanentmagnetizationacquisitioninvortexstateparticleassemblies
AT gfsouzajunior efficiencyofthermoremanentmagnetizationacquisitioninvortexstateparticleassemblies
AT lnagy efficiencyofthermoremanentmagnetizationacquisitioninvortexstateparticleassemblies
AT luieda efficiencyofthermoremanentmagnetizationacquisitioninvortexstateparticleassemblies
AT riftrindade efficiencyofthermoremanentmagnetizationacquisitioninvortexstateparticleassemblies