Bifurcation of an Orbit Homoclinic to a Hyperbolic Saddle of a Vector Field in R4
We perform a bifurcation analysis of an orbit homoclinic to a hyperbolic saddle of a vector field in R4. We give an expression of the gap between returning points in a transverse section by renormalizing system, through which we find the existence of homoclinic-doubling bifurcation in the case 1+α&g...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2015-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2015/571838 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We perform a bifurcation analysis of an orbit homoclinic to a hyperbolic saddle of a vector field in R4. We give an expression of the gap between returning points in a transverse section by renormalizing system, through which we find the existence of homoclinic-doubling bifurcation in the case 1+α>β>ν. Meanwhile, after reparametrizing the parameter, a periodic-doubling bifurcation appears and may be close to a saddle-node bifurcation, if the parameter is varied. These scenarios correspond to the occurrence of chaos. Based on our analysis, bifurcation diagrams of these bifurcations are depicted. |
|---|---|
| ISSN: | 1026-0226 1607-887X |