Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms

Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPE...

Full description

Saved in:
Bibliographic Details
Main Authors: Marcelo Augusto Garcia-Junior, Bruno Silva Andrade, Ana Paula Lima, Iara Pereira Soares, Ana Flávia Oliveira Notário, Sttephany Silva Bernardino, Marco Fidel Guevara-Vega, Ghabriel Honório-Silva, Rodrigo Alejandro Abarza Munoz, Ana Carolina Gomes Jardim, Mário Machado Martins, Luiz Ricardo Goulart, Thulio Marquez Cunha, Murillo Guimarães Carneiro, Robinson Sabino-Silva
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/15/2/75
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850080780822249472
author Marcelo Augusto Garcia-Junior
Bruno Silva Andrade
Ana Paula Lima
Iara Pereira Soares
Ana Flávia Oliveira Notário
Sttephany Silva Bernardino
Marco Fidel Guevara-Vega
Ghabriel Honório-Silva
Rodrigo Alejandro Abarza Munoz
Ana Carolina Gomes Jardim
Mário Machado Martins
Luiz Ricardo Goulart
Thulio Marquez Cunha
Murillo Guimarães Carneiro
Robinson Sabino-Silva
author_facet Marcelo Augusto Garcia-Junior
Bruno Silva Andrade
Ana Paula Lima
Iara Pereira Soares
Ana Flávia Oliveira Notário
Sttephany Silva Bernardino
Marco Fidel Guevara-Vega
Ghabriel Honório-Silva
Rodrigo Alejandro Abarza Munoz
Ana Carolina Gomes Jardim
Mário Machado Martins
Luiz Ricardo Goulart
Thulio Marquez Cunha
Murillo Guimarães Carneiro
Robinson Sabino-Silva
author_sort Marcelo Augusto Garcia-Junior
collection DOAJ
description Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)<sub>6</sub>]<sup>3−/4</sup> solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva.
format Article
id doaj-art-4d436bfbe97b4ed6bbf78aed6ee4376a
institution DOAJ
issn 2079-6374
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Biosensors
spelling doaj-art-4d436bfbe97b4ed6bbf78aed6ee4376a2025-08-20T02:44:52ZengMDPI AGBiosensors2079-63742025-01-011527510.3390/bios15020075Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning AlgorithmsMarcelo Augusto Garcia-Junior0Bruno Silva Andrade1Ana Paula Lima2Iara Pereira Soares3Ana Flávia Oliveira Notário4Sttephany Silva Bernardino5Marco Fidel Guevara-Vega6Ghabriel Honório-Silva7Rodrigo Alejandro Abarza Munoz8Ana Carolina Gomes Jardim9Mário Machado Martins10Luiz Ricardo Goulart11Thulio Marquez Cunha12Murillo Guimarães Carneiro13Robinson Sabino-Silva14Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, BrazilDepartment of Biological Sciences, Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia (UESB), Jequié 45205-490, BrazilDepartment of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, BrazilPost-Graduation Program in Genetics and Biochemistry, Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart, Federal University of Uberlândia (UFU), Uberlândia 38408-100, BrazilPost-Graduation Program in Genetics and Biochemistry, Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart, Federal University of Uberlândia (UFU), Uberlândia 38408-100, BrazilDepartment of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, BrazilDepartment of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, BrazilDepartment of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, BrazilInstitute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia 38408-100, BrazilInstitute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, BrazilDepartment of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, BrazilDepartment of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, BrazilDepartment of Pulmonology, School of Medicine, Federal University of Uberlandia (UFU), Uberlândia 38408-100, BrazilFaculty of Computing, Federal University of Uberlandia (UFU), Uberlândia 38408-100, BrazilDepartment of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, BrazilDeveloping affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)<sub>6</sub>]<sup>3−/4</sup> solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva.https://www.mdpi.com/2079-6374/15/2/75biosensorsCOVID-19bio-inspired peptidesartificial intelligencesalivary diagnosticselectrochemical detection
spellingShingle Marcelo Augusto Garcia-Junior
Bruno Silva Andrade
Ana Paula Lima
Iara Pereira Soares
Ana Flávia Oliveira Notário
Sttephany Silva Bernardino
Marco Fidel Guevara-Vega
Ghabriel Honório-Silva
Rodrigo Alejandro Abarza Munoz
Ana Carolina Gomes Jardim
Mário Machado Martins
Luiz Ricardo Goulart
Thulio Marquez Cunha
Murillo Guimarães Carneiro
Robinson Sabino-Silva
Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
Biosensors
biosensors
COVID-19
bio-inspired peptides
artificial intelligence
salivary diagnostics
electrochemical detection
title Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
title_full Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
title_fullStr Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
title_full_unstemmed Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
title_short Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
title_sort artificial intelligence bio inspired peptide for salivary detection of sars cov 2 in electrochemical biosensor integrated with machine learning algorithms
topic biosensors
COVID-19
bio-inspired peptides
artificial intelligence
salivary diagnostics
electrochemical detection
url https://www.mdpi.com/2079-6374/15/2/75
work_keys_str_mv AT marceloaugustogarciajunior artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT brunosilvaandrade artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT anapaulalima artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT iarapereirasoares artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT anaflaviaoliveiranotario artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT sttephanysilvabernardino artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT marcofidelguevaravega artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT ghabrielhonoriosilva artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT rodrigoalejandroabarzamunoz artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT anacarolinagomesjardim artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT mariomachadomartins artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT luizricardogoulart artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT thuliomarquezcunha artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT murilloguimaraescarneiro artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms
AT robinsonsabinosilva artificialintelligencebioinspiredpeptideforsalivarydetectionofsarscov2inelectrochemicalbiosensorintegratedwithmachinelearningalgorithms