Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms

Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPE...

Full description

Saved in:
Bibliographic Details
Main Authors: Marcelo Augusto Garcia-Junior, Bruno Silva Andrade, Ana Paula Lima, Iara Pereira Soares, Ana Flávia Oliveira Notário, Sttephany Silva Bernardino, Marco Fidel Guevara-Vega, Ghabriel Honório-Silva, Rodrigo Alejandro Abarza Munoz, Ana Carolina Gomes Jardim, Mário Machado Martins, Luiz Ricardo Goulart, Thulio Marquez Cunha, Murillo Guimarães Carneiro, Robinson Sabino-Silva
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/15/2/75
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)<sub>6</sub>]<sup>3−/4</sup> solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva.
ISSN:2079-6374