Imputasi Data Temperatur Maksimum Menggunakan Metode Support Vector Regression

Temperature is a crucial element affecting various aspects, from agriculture to natural disasters. Temperature data imputation is also important because, in some cases, temperature data is not always complete. This study aims to predict missing temperature data in the East Nusa Tenggara (NTT) regio...

Full description

Saved in:
Bibliographic Details
Main Authors: Isa Kholifatus Sukhna, Brina Miftahurrohmah, Catur Wulandari, Putri Amelia
Format: Article
Language:English
Published: Universitas Islam Negeri Sunan Kalijaga Yogyakarta 2025-05-01
Series:JISKA (Jurnal Informatika Sunan Kalijaga)
Subjects:
Online Access:https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/4497
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849735741035249664
author Isa Kholifatus Sukhna
Brina Miftahurrohmah
Catur Wulandari
Putri Amelia
author_facet Isa Kholifatus Sukhna
Brina Miftahurrohmah
Catur Wulandari
Putri Amelia
author_sort Isa Kholifatus Sukhna
collection DOAJ
description Temperature is a crucial element affecting various aspects, from agriculture to natural disasters. Temperature data imputation is also important because, in some cases, temperature data is not always complete. This study aims to predict missing temperature data in the East Nusa Tenggara (NTT) region using the Support Vector Regression (SVR) method. The data used comes from six BMKG observation stations in NTT and ERA-5 Reanalysis data. The choice of the SVR method is based on its ability to handle data with complex structures. Modeling is conducted separately for each station using the Radial Basis Function (RBF) kernel. Model evaluation employs the metrics Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R²), presenting the evaluation results with low error. The results show that among several parameter tests, the parameter ranges [C = 1, 5, 10, 15], [ε = 0,1, 0,3, 0,6, 0,9], and [γ = 1, 5, 10, 15] in the SVR method are the best parameter ranges across all stations. The prediction graphs display different temperature fluctuation patterns at each station. This study contributes to enhancing the availability of accurate climate data to support sustainable decision-making in the NTT region.
format Article
id doaj-art-4d17478b34914f098a6878a4b58524d4
institution DOAJ
issn 2527-5836
2528-0074
language English
publishDate 2025-05-01
publisher Universitas Islam Negeri Sunan Kalijaga Yogyakarta
record_format Article
series JISKA (Jurnal Informatika Sunan Kalijaga)
spelling doaj-art-4d17478b34914f098a6878a4b58524d42025-08-20T03:07:28ZengUniversitas Islam Negeri Sunan Kalijaga YogyakartaJISKA (Jurnal Informatika Sunan Kalijaga)2527-58362528-00742025-05-01102Imputasi Data Temperatur Maksimum Menggunakan Metode Support Vector RegressionIsa Kholifatus Sukhna0Brina Miftahurrohmah1Catur Wulandari2Putri Amelia3Universitas Internasional Semen IndonesiaUniversitas Internasional Semen IndonesiaUniversitas Internasional Semen IndonesiaUniversitas Internasional Semen Indonesia Temperature is a crucial element affecting various aspects, from agriculture to natural disasters. Temperature data imputation is also important because, in some cases, temperature data is not always complete. This study aims to predict missing temperature data in the East Nusa Tenggara (NTT) region using the Support Vector Regression (SVR) method. The data used comes from six BMKG observation stations in NTT and ERA-5 Reanalysis data. The choice of the SVR method is based on its ability to handle data with complex structures. Modeling is conducted separately for each station using the Radial Basis Function (RBF) kernel. Model evaluation employs the metrics Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R²), presenting the evaluation results with low error. The results show that among several parameter tests, the parameter ranges [C = 1, 5, 10, 15], [ε = 0,1, 0,3, 0,6, 0,9], and [γ = 1, 5, 10, 15] in the SVR method are the best parameter ranges across all stations. The prediction graphs display different temperature fluctuation patterns at each station. This study contributes to enhancing the availability of accurate climate data to support sustainable decision-making in the NTT region. https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/4497TemperatureSVRNTTReanalysis ERA-5RBF
spellingShingle Isa Kholifatus Sukhna
Brina Miftahurrohmah
Catur Wulandari
Putri Amelia
Imputasi Data Temperatur Maksimum Menggunakan Metode Support Vector Regression
JISKA (Jurnal Informatika Sunan Kalijaga)
Temperature
SVR
NTT
Reanalysis ERA-5
RBF
title Imputasi Data Temperatur Maksimum Menggunakan Metode Support Vector Regression
title_full Imputasi Data Temperatur Maksimum Menggunakan Metode Support Vector Regression
title_fullStr Imputasi Data Temperatur Maksimum Menggunakan Metode Support Vector Regression
title_full_unstemmed Imputasi Data Temperatur Maksimum Menggunakan Metode Support Vector Regression
title_short Imputasi Data Temperatur Maksimum Menggunakan Metode Support Vector Regression
title_sort imputasi data temperatur maksimum menggunakan metode support vector regression
topic Temperature
SVR
NTT
Reanalysis ERA-5
RBF
url https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/4497
work_keys_str_mv AT isakholifatussukhna imputasidatatemperaturmaksimummenggunakanmetodesupportvectorregression
AT brinamiftahurrohmah imputasidatatemperaturmaksimummenggunakanmetodesupportvectorregression
AT caturwulandari imputasidatatemperaturmaksimummenggunakanmetodesupportvectorregression
AT putriamelia imputasidatatemperaturmaksimummenggunakanmetodesupportvectorregression