Fusion of Acoustic and Vis-NIRS Information for High-Accuracy Online Detection of Moldy Core in Apples

Moldy core is a common disease of apples, and non-destructive, rapid and accurate detection of moldy core apples is essential to ensure food safety and reduce post-harvest economic losses. In this study, the acoustic method was used for the first time for the online detection of moldy core apples, a...

Full description

Saved in:
Bibliographic Details
Main Authors: Nan Chen, Xiaoyu Zhang, Zhi Liu, Tianyu Zhang, Qingrong Lai, Bin Li, Yeqing Lu, Bo Hu, Xiaogang Jiang, Yande Liu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/11/1202
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Moldy core is a common disease of apples, and non-destructive, rapid and accurate detection of moldy core apples is essential to ensure food safety and reduce post-harvest economic losses. In this study, the acoustic method was used for the first time for the online detection of moldy core apples, and we explore the feasibility of integrating acoustic and visible–near-infrared spectroscopy (Vis–NIRS) technologies for precise, real-time detection of moldy core in apples. The sound and Vis–NIRS signals of apples were collected using a novel acoustic online detection device and a traditional Vis–NIRS online sorter, respectively. Based on this, traditional machine learning and deep learning classification models were developed for the prediction of healthy, mild, moderate, and severe moldy apples. The results show that the acoustic detection method significantly outperforms the Vis–NIRS method in terms of moldy apple identification accuracy, and the fusion of acoustic and Vis–NIRS data can further improve the model prediction performance. The MLP-Transformer shows the best prediction performance, with the overall classification accuracies for the fusion of Vis–NIRS, acoustic, Vis–NIRS and acoustic reached 89.66%, 96.55%, and 98.62%, respectively. This study demonstrates the excellent performance of acoustic online detection for intra-fruit lesion identification and shows the potential of the fusion of acoustics and Vis–NIRS.
ISSN:2077-0472