Deep Reinforcement Learning-Based Deployment Method for Emergency Communication Network
Emergency communication networks play a crucial role in disaster relief operations. Current automated deployment strategies based on rule-driven or heuristic algorithms struggle to adapt to the dynamic and heterogeneous network environments in disaster scenarios, while manual command deployment is c...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/14/7961 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Emergency communication networks play a crucial role in disaster relief operations. Current automated deployment strategies based on rule-driven or heuristic algorithms struggle to adapt to the dynamic and heterogeneous network environments in disaster scenarios, while manual command deployment is constrained by personnel expertise and response time requirements, leading to suboptimal trade-offs between deployment efficiency and reliability. To address these challenges, this study proposes a novel deep reinforcement learning framework with a fully convolutional value network architecture, which achieves breakthroughs in multi-dimensional spatial decision-making through end-to-end feature extraction. This design effectively mitigates the “curse of dimensionality” inherent in traditional reinforcement learning methods for topology planning. Experimental results demonstrate that the proposed method effectively accomplishes the planning tasks of emergency communication hub elements, significantly improving deployment efficiency while maintaining robustness in complex environments. |
|---|---|
| ISSN: | 2076-3417 |