DPPC Membrane Under Lateral Compression and Stretching to Extreme Limits: Phase Transitions and Rupture

Dipalmitoylphosphatidylcholine (DPPC), is one of the key bilayer membranes of the phosphatidylcholine (PC) family which constitutes 40–50% of total cellular phospholipids in mammal cells. We investigate the behavior of an initially planar DPPC membrane under lateral pressures from −200 to 150 bar at...

Full description

Saved in:
Bibliographic Details
Main Authors: Subhalaxmi Das, Nikos Ch. Karayiannis, Supriya Roy
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/15/6/161
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dipalmitoylphosphatidylcholine (DPPC), is one of the key bilayer membranes of the phosphatidylcholine (PC) family which constitutes 40–50% of total cellular phospholipids in mammal cells. We investigate the behavior of an initially planar DPPC membrane under lateral pressures from −200 to 150 bar at 323 K using microsecond-scale simulations. We identify, with very high precision, the pressure range for the occurrence of critical phenomena, mainly undulation and rupture. Notably, under compression, the membrane initially thickens, leading to a phase transition to an undulated state between 40 and 50 bar, as gauged by the sharp changes in the diverse structural metrics. Stretching induces systematic membrane thinning, with rupture becoming probable at −170 bar and certain at −200 bar. The reverse compression cycle shows pressure hysteresis with a 10-bar shift, while the reverse stretching cycle retraces the pathway. System size has a minimal impact on the observed trends. Under extreme mechanical stress, particularly near critical phenomena, simulation times on the order of microsecond are needed to accurately capture phase behavior and structural alterations. This work provides important insights into understanding membrane behavior under extreme conditions, which are relevant to numerous biological and technological applications.
ISSN:2077-0375