SHAKF-PU: Sage–Husa Adaptive Kalman Filtering-Based Pedestrian Characteristic Parameter Update Mechanism for Enhancing Step Length Estimation in Pedestrian Dead Reckoning

Step length estimation (SLE) is the core process for pedestrian dead reckoning (PDR) for indoor positioning. Original SLE requires accurate estimations of pedestrian characteristic parameter (PCP) by the linear update, which may cause large distance errors. To enhance SLE, this paper proposes the Sa...

Full description

Saved in:
Bibliographic Details
Main Authors: Chinyang Henry Tseng, Jiunn-Yih Wu
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:Applied Bionics and Biomechanics
Online Access:http://dx.doi.org/10.1155/2024/1150076
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546192346578944
author Chinyang Henry Tseng
Jiunn-Yih Wu
author_facet Chinyang Henry Tseng
Jiunn-Yih Wu
author_sort Chinyang Henry Tseng
collection DOAJ
description Step length estimation (SLE) is the core process for pedestrian dead reckoning (PDR) for indoor positioning. Original SLE requires accurate estimations of pedestrian characteristic parameter (PCP) by the linear update, which may cause large distance errors. To enhance SLE, this paper proposes the Sage–Husa adaptive Kalman filtering-based PCP update (SHAKF-PU) mechanism for enhancing SLE in PDR. SHAKF has the characteristic of predicting the trend of historical data; the estimated PCP is closer to the true value than the linear update. Since different kinds of pedestrians can influence the PCP estimation, adaptive PCP estimation is required. Compared with the classical Kalman filter, SHAKF updates its Q and R parameters in each update period so the estimated PCP can be more accurate than other existing methods. The experimental results show that SHAKF-PU reduces the error by 24.86% compared to the linear update, and thus, the SHAKF-PU enhances the indoor positioning accuracy for PDR.
format Article
id doaj-art-4cbd97678cd049aa8f63623d574238e2
institution Kabale University
issn 1754-2103
language English
publishDate 2024-01-01
publisher Wiley
record_format Article
series Applied Bionics and Biomechanics
spelling doaj-art-4cbd97678cd049aa8f63623d574238e22025-02-03T07:23:42ZengWileyApplied Bionics and Biomechanics1754-21032024-01-01202410.1155/2024/1150076SHAKF-PU: Sage–Husa Adaptive Kalman Filtering-Based Pedestrian Characteristic Parameter Update Mechanism for Enhancing Step Length Estimation in Pedestrian Dead ReckoningChinyang Henry Tseng0Jiunn-Yih Wu1Department of Computer Science and Information EngineeringCollege of MedicineStep length estimation (SLE) is the core process for pedestrian dead reckoning (PDR) for indoor positioning. Original SLE requires accurate estimations of pedestrian characteristic parameter (PCP) by the linear update, which may cause large distance errors. To enhance SLE, this paper proposes the Sage–Husa adaptive Kalman filtering-based PCP update (SHAKF-PU) mechanism for enhancing SLE in PDR. SHAKF has the characteristic of predicting the trend of historical data; the estimated PCP is closer to the true value than the linear update. Since different kinds of pedestrians can influence the PCP estimation, adaptive PCP estimation is required. Compared with the classical Kalman filter, SHAKF updates its Q and R parameters in each update period so the estimated PCP can be more accurate than other existing methods. The experimental results show that SHAKF-PU reduces the error by 24.86% compared to the linear update, and thus, the SHAKF-PU enhances the indoor positioning accuracy for PDR.http://dx.doi.org/10.1155/2024/1150076
spellingShingle Chinyang Henry Tseng
Jiunn-Yih Wu
SHAKF-PU: Sage–Husa Adaptive Kalman Filtering-Based Pedestrian Characteristic Parameter Update Mechanism for Enhancing Step Length Estimation in Pedestrian Dead Reckoning
Applied Bionics and Biomechanics
title SHAKF-PU: Sage–Husa Adaptive Kalman Filtering-Based Pedestrian Characteristic Parameter Update Mechanism for Enhancing Step Length Estimation in Pedestrian Dead Reckoning
title_full SHAKF-PU: Sage–Husa Adaptive Kalman Filtering-Based Pedestrian Characteristic Parameter Update Mechanism for Enhancing Step Length Estimation in Pedestrian Dead Reckoning
title_fullStr SHAKF-PU: Sage–Husa Adaptive Kalman Filtering-Based Pedestrian Characteristic Parameter Update Mechanism for Enhancing Step Length Estimation in Pedestrian Dead Reckoning
title_full_unstemmed SHAKF-PU: Sage–Husa Adaptive Kalman Filtering-Based Pedestrian Characteristic Parameter Update Mechanism for Enhancing Step Length Estimation in Pedestrian Dead Reckoning
title_short SHAKF-PU: Sage–Husa Adaptive Kalman Filtering-Based Pedestrian Characteristic Parameter Update Mechanism for Enhancing Step Length Estimation in Pedestrian Dead Reckoning
title_sort shakf pu sage husa adaptive kalman filtering based pedestrian characteristic parameter update mechanism for enhancing step length estimation in pedestrian dead reckoning
url http://dx.doi.org/10.1155/2024/1150076
work_keys_str_mv AT chinyanghenrytseng shakfpusagehusaadaptivekalmanfilteringbasedpedestriancharacteristicparameterupdatemechanismforenhancingsteplengthestimationinpedestriandeadreckoning
AT jiunnyihwu shakfpusagehusaadaptivekalmanfilteringbasedpedestriancharacteristicparameterupdatemechanismforenhancingsteplengthestimationinpedestriandeadreckoning