Risk Identification Method and Application of Roof Water Inrush Under Multi-Working Face Mining

Adjacent, multi-working face mining can expand the range of disturbed overburden, increasing the risk of triggering roof water inrush, which threatens the safe operation of coal mines. In this paper, we propose a risk identification method for roof water inrush under multi-working face mining condit...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhendi Huang, Kun Wang, Xuesheng Liu, Yongqiang Zhao, Xuebin Li, Biao Fu, Yu Zhou
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/7/3511
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adjacent, multi-working face mining can expand the range of disturbed overburden, increasing the risk of triggering roof water inrush, which threatens the safe operation of coal mines. In this paper, we propose a risk identification method for roof water inrush under multi-working face mining conditions based on the theory of Key Strata and Full Mining Disturbance. Firstly, the key strata of the overburden are determined based on lithological and structural data from exploration boreholes. A formula is then derived to calculate the critical dimension (L) of the working face that could induce a fracture in the key stratum. The relationship between L and the combined width of the preceding and adjacent working faces is analyzed to assess whether the key stratum is fractured and how it affects the preceding working face. Finally, the height of the water-conducting fracture zone is predicted. The impact of repeated disturbances from multi-working face mining is evaluated to determine whether the height of the water-conducting fracture zone in the preceding working face increases, thereby enabling risk identification for roof water inrush under multi-working face mining conditions. Taking the multi-working faces of the Banji Coal Mine in Anhui Province as a case study, the predicted height of the water-conducting fracture zone is 60 m, with no risk of delayed roof water inrush in the preceding working face. Both numerical simulation results and field measurements of the development height of the water-conducting fracture zone confirm the effectiveness of this method. It is capable of accurately predicting the development height of the water-conducting fracture zone under multi-working face mining conditions and identifying the associated risk of roof water inrush, thus providing a valuable reference for ensuring safe mining operations in multi-working face mining conditions.
ISSN:2076-3417