Mutually Compactificable Topological Spaces
Two disjoint topological spaces X, Y are (T2-) mutually compactificable if there exists a compact (T2-) topology on K=X∪Y which coincides on X, Y with their original topologies such that the points x∈X, y∈Y have open disjoint neighborhoods in K. This paper, the first one from a series, contains some...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2007-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2007/70671 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two disjoint topological spaces X, Y are (T2-) mutually compactificable if there exists a compact (T2-) topology on K=X∪Y which coincides on X, Y with their original topologies such that the points x∈X, y∈Y have open disjoint neighborhoods in K. This paper, the first one from a series, contains some initial investigations of the notion. Some key properties are the following: a topological space is mutually compactificable with some space if and only if it is θ-regular. A regular space on which every real-valued continuous function
is constant is mutually compactificable with no
S2-space. On the other hand, there exists a regular non-T3.5 space which is mutually compactificable with the infinite countable
discrete space. |
---|---|
ISSN: | 0161-1712 1687-0425 |