An event generator for neutrino-induced deep inelastic scattering and applications to neutrino astronomy

Abstract We extend the recently presented, fully exclusive, next-to-leading-order accurate event generator for the simulation of massless neutral- and charged-current deep inelastic scattering (DIS) to the case of incoming neutrinos. The generator can be used to study neutrino-nucleon interactions a...

Full description

Saved in:
Bibliographic Details
Main Authors: Silvia Ferrario Ravasio, Rhorry Gauld, Barbara Jäger, Alexander Karlberg, Giulia Zanderighi
Format: Article
Language:English
Published: SpringerOpen 2025-08-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-025-14539-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract We extend the recently presented, fully exclusive, next-to-leading-order accurate event generator for the simulation of massless neutral- and charged-current deep inelastic scattering (DIS) to the case of incoming neutrinos. The generator can be used to study neutrino-nucleon interactions at (ultra) high energies, and is relevant for a range of fixed-target collider experiments and large-volume neutrino detectors, investigating atmospheric and astrophysical neutrinos. The matching with multi-purpose event generators such as PYTHIA 8 is performed with the POWHEG method, and accounts for parton showering and non-perturbative effects such as hadronization. This makes it possible to investigate higher-order perturbative corrections to realistic observables, such as the distribution of charged particles. To illustrate the capabilities of the code we provide predictions for several differential distributions in fixed-target collisions for neutrino energies up to $$1~\textrm{PeV} $$ 1 PeV .
ISSN:1434-6052