A Cross-Chain-Based Access Control Framework for Cloud Environment
Cloud computing presents itself as one of the leading technologies in the IT solutions field, providing a variety of services and capabilities. Meanwhile, blockchain-based solutions emerge as advantageous as they permit data immutability, transaction efficiency, transparency, and trust due to decent...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Future Internet |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1999-5903/17/4/149 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Cloud computing presents itself as one of the leading technologies in the IT solutions field, providing a variety of services and capabilities. Meanwhile, blockchain-based solutions emerge as advantageous as they permit data immutability, transaction efficiency, transparency, and trust due to decentralization and the use of smart contracts. In this paper, we are consolidating these two technologies into a secure framework for access control in cloud environments. A cross-chain-based methodology is used, in which transactions and interactions between multiple blockchains and cloud computing systems are supported, such that no separate third-party certificates are required in the authentication and authorization processes. This paper presents a cross-chain-based framework that integrates a full, fine-grained, attribute-based access control (ABAC) mechanism that evaluates cloud user access transaction attributes. It grants or denies access to the cloud resources by inferring knowledge about the attributes received using semantic reasoning based on ontologies, resulting in a more reliable method for information sharing over the cloud network. Our implemented cross-chain framework on the Cosmos ecosystem with the integrated semantic ABAC scored an overall access control (AC) processing time of 9.72 ms. |
|---|---|
| ISSN: | 1999-5903 |