Modelling biochemical systems: from Mass Action Kinetics to Linear Noise Approximation

In the last decade we have witnessed a growing application of engineering techniques to biology. Areas such as Systems Biology or, more recently, Synthetic Biology, get more and more attention from the engineers. Specifically, modeling in these fields makes possible the generation of new experimenta...

Full description

Saved in:
Bibliographic Details
Main Authors: Jesús Picó, Alejandro Vignoni, Enric Picó-Marco, Yadira Boada
Format: Article
Language:Spanish
Published: Universitat Politècnica de València 2015-07-01
Series:Revista Iberoamericana de Automática e Informática Industrial RIAI
Subjects:
Online Access:https://polipapers.upv.es/index.php/RIAI/article/view/9358
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850084189816225792
author Jesús Picó
Alejandro Vignoni
Enric Picó-Marco
Yadira Boada
author_facet Jesús Picó
Alejandro Vignoni
Enric Picó-Marco
Yadira Boada
author_sort Jesús Picó
collection DOAJ
description In the last decade we have witnessed a growing application of engineering techniques to biology. Areas such as Systems Biology or, more recently, Synthetic Biology, get more and more attention from the engineers. Specifically, modeling in these fields makes possible the generation of new experimentally verifiable hypothesis, and new ways of biological intervention, as well as more or less mechanistic explanations of experimental results. A model-based approximation requires the consideration of the biochemical reactions dynamics and their regulation. The first part of this tutorial describes the deterministic modeling and model reduction techniques, as applied to the class of biochemical reactions specific to molecular cell biology. Noise plays a crucial role in the biological circuitry dynamics. In the field of automatic control there is a long tradition of modeling using linear stochastic differential equations, under the simplifying assumption that noise has a magnitude independent of the state. This assumption is not valid in biological circuits. The second part of the tutorial describes the most widely used methods for stochastic modeling in molecular cell biology, paying special attention to the so-called linear noise approximation.
format Article
id doaj-art-4c56e060fade4d29bcff4d1c97d266fe
institution DOAJ
issn 1697-7912
1697-7920
language Spanish
publishDate 2015-07-01
publisher Universitat Politècnica de València
record_format Article
series Revista Iberoamericana de Automática e Informática Industrial RIAI
spelling doaj-art-4c56e060fade4d29bcff4d1c97d266fe2025-08-20T02:44:08ZspaUniversitat Politècnica de ValènciaRevista Iberoamericana de Automática e Informática Industrial RIAI1697-79121697-79202015-07-0112324125210.1016/j.riai.2015.06.0016403Modelling biochemical systems: from Mass Action Kinetics to Linear Noise ApproximationJesús Picó0Alejandro Vignoni1Enric Picó-Marco2Yadira Boada3Universitat Polit?nica de Val?ciaInstituto Max Planck de Biología Celular Molecular y GenéticaUniversitat Polit?nica de Val?ciaUniversitat Polit?nica de Val?ciaIn the last decade we have witnessed a growing application of engineering techniques to biology. Areas such as Systems Biology or, more recently, Synthetic Biology, get more and more attention from the engineers. Specifically, modeling in these fields makes possible the generation of new experimentally verifiable hypothesis, and new ways of biological intervention, as well as more or less mechanistic explanations of experimental results. A model-based approximation requires the consideration of the biochemical reactions dynamics and their regulation. The first part of this tutorial describes the deterministic modeling and model reduction techniques, as applied to the class of biochemical reactions specific to molecular cell biology. Noise plays a crucial role in the biological circuitry dynamics. In the field of automatic control there is a long tradition of modeling using linear stochastic differential equations, under the simplifying assumption that noise has a magnitude independent of the state. This assumption is not valid in biological circuits. The second part of the tutorial describes the most widely used methods for stochastic modeling in molecular cell biology, paying special attention to the so-called linear noise approximation.https://polipapers.upv.es/index.php/RIAI/article/view/9358Sistemas estocásticosEcuaciones diferencialesModelado de sistemas continuosReducción de modelosSimulación de sistemasRuidoSistemas biológicosbiotecnológicos y bioprocesos
spellingShingle Jesús Picó
Alejandro Vignoni
Enric Picó-Marco
Yadira Boada
Modelling biochemical systems: from Mass Action Kinetics to Linear Noise Approximation
Revista Iberoamericana de Automática e Informática Industrial RIAI
Sistemas estocásticos
Ecuaciones diferenciales
Modelado de sistemas continuos
Reducción de modelos
Simulación de sistemas
Ruido
Sistemas biológicos
biotecnológicos y bioprocesos
title Modelling biochemical systems: from Mass Action Kinetics to Linear Noise Approximation
title_full Modelling biochemical systems: from Mass Action Kinetics to Linear Noise Approximation
title_fullStr Modelling biochemical systems: from Mass Action Kinetics to Linear Noise Approximation
title_full_unstemmed Modelling biochemical systems: from Mass Action Kinetics to Linear Noise Approximation
title_short Modelling biochemical systems: from Mass Action Kinetics to Linear Noise Approximation
title_sort modelling biochemical systems from mass action kinetics to linear noise approximation
topic Sistemas estocásticos
Ecuaciones diferenciales
Modelado de sistemas continuos
Reducción de modelos
Simulación de sistemas
Ruido
Sistemas biológicos
biotecnológicos y bioprocesos
url https://polipapers.upv.es/index.php/RIAI/article/view/9358
work_keys_str_mv AT jesuspico modellingbiochemicalsystemsfrommassactionkineticstolinearnoiseapproximation
AT alejandrovignoni modellingbiochemicalsystemsfrommassactionkineticstolinearnoiseapproximation
AT enricpicomarco modellingbiochemicalsystemsfrommassactionkineticstolinearnoiseapproximation
AT yadiraboada modellingbiochemicalsystemsfrommassactionkineticstolinearnoiseapproximation