Multiple Solutions of Fractional Kazdan–Warner Equation for Negative Case on Finite Graphs

This work establishes the multiplicity of solutions for the fractional Kazdan–Warner equation on finite graphs for the negative case. Our main focus lies in analyzing the nonlinear equation defined on a finite graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang Shan, Yang Liu
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/5/345
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849711778907291648
author Liang Shan
Yang Liu
author_facet Liang Shan
Yang Liu
author_sort Liang Shan
collection DOAJ
description This work establishes the multiplicity of solutions for the fractional Kazdan–Warner equation on finite graphs for the negative case. Our main focus lies in analyzing the nonlinear equation defined on a finite graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mo>(</mo><mo>−</mo><mo>Δ</mo><mo>)</mo></mrow><mi>s</mi></msup><mi>u</mi><mo>=</mo><mrow><mo>(</mo><mi>K</mi><mo>+</mo><mi>λ</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mn>2</mn><mi>u</mi></mrow></msup><mo>−</mo><mi>κ</mi><mspace width="1.em"></mspace><mi>in</mi><mspace width="4pt"></mspace><mi>V</mi><mo>,</mo></mrow></semantics></math></inline-formula> where the fraction <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> and real parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> are given, and the graph functions <i>K</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula> satisfy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>max</mi><mrow><mi>x</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>K</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mo>≢</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∫</mo><mi>V</mi></msub><mi>κ</mi><mi>d</mi><mi>μ</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>. We derive the solvability characteristics of the above equation with the help of variational theory and the upper and lower solutions method.
format Article
id doaj-art-4c5570ae8b574207b8e768cfeb6cae2b
institution DOAJ
issn 2075-1680
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-4c5570ae8b574207b8e768cfeb6cae2b2025-08-20T03:14:32ZengMDPI AGAxioms2075-16802025-04-0114534510.3390/axioms14050345Multiple Solutions of Fractional Kazdan–Warner Equation for Negative Case on Finite GraphsLiang Shan0Yang Liu1Gaoling School of Artificial Intelligence, Renmin University of China, Beijing 100872, ChinaSchool of Mathematics, Renmin University of China, Beijing 100872, ChinaThis work establishes the multiplicity of solutions for the fractional Kazdan–Warner equation on finite graphs for the negative case. Our main focus lies in analyzing the nonlinear equation defined on a finite graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mo>(</mo><mo>−</mo><mo>Δ</mo><mo>)</mo></mrow><mi>s</mi></msup><mi>u</mi><mo>=</mo><mrow><mo>(</mo><mi>K</mi><mo>+</mo><mi>λ</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mn>2</mn><mi>u</mi></mrow></msup><mo>−</mo><mi>κ</mi><mspace width="1.em"></mspace><mi>in</mi><mspace width="4pt"></mspace><mi>V</mi><mo>,</mo></mrow></semantics></math></inline-formula> where the fraction <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> and real parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> are given, and the graph functions <i>K</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula> satisfy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>max</mi><mrow><mi>x</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>K</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mo>≢</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∫</mo><mi>V</mi></msub><mi>κ</mi><mi>d</mi><mi>μ</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>. We derive the solvability characteristics of the above equation with the help of variational theory and the upper and lower solutions method.https://www.mdpi.com/2075-1680/14/5/345finite graphsvariational theoryfractional Kazdan–Warner equation
spellingShingle Liang Shan
Yang Liu
Multiple Solutions of Fractional Kazdan–Warner Equation for Negative Case on Finite Graphs
Axioms
finite graphs
variational theory
fractional Kazdan–Warner equation
title Multiple Solutions of Fractional Kazdan–Warner Equation for Negative Case on Finite Graphs
title_full Multiple Solutions of Fractional Kazdan–Warner Equation for Negative Case on Finite Graphs
title_fullStr Multiple Solutions of Fractional Kazdan–Warner Equation for Negative Case on Finite Graphs
title_full_unstemmed Multiple Solutions of Fractional Kazdan–Warner Equation for Negative Case on Finite Graphs
title_short Multiple Solutions of Fractional Kazdan–Warner Equation for Negative Case on Finite Graphs
title_sort multiple solutions of fractional kazdan warner equation for negative case on finite graphs
topic finite graphs
variational theory
fractional Kazdan–Warner equation
url https://www.mdpi.com/2075-1680/14/5/345
work_keys_str_mv AT liangshan multiplesolutionsoffractionalkazdanwarnerequationfornegativecaseonfinitegraphs
AT yangliu multiplesolutionsoffractionalkazdanwarnerequationfornegativecaseonfinitegraphs