On the Lanczos Method for Computing Some Matrix Functions

The study of matrix functions is highly significant and has important applications in control theory, quantum mechanics, signal processing, and machine learning. Previous work has mainly focused on how to use the Krylov-type method to efficiently calculate matrix functions <inline-formula><...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying Gu, Hari Mohan Srivastava, Xiaolan Liu
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/11/764
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The study of matrix functions is highly significant and has important applications in control theory, quantum mechanics, signal processing, and machine learning. Previous work has mainly focused on how to use the Krylov-type method to efficiently calculate matrix functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">β</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="bold-italic">β</mi><mi>T</mi></msup><mi>f</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">β</mi></semantics></math></inline-formula> when <i>A</i> is symmetric. In this paper, we mainly illustrate the convergence using the polynomial approximation theory for the case where <i>A</i> is symmetric positive definite. Numerical results illustrate the effectiveness of our theoretical results.
ISSN:2075-1680