Unraveling the power of NAP-CNB’s machine learning-enhanced tumor neoantigen prediction

In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expressio...

Full description

Saved in:
Bibliographic Details
Main Authors: Almudena Mendez-Perez, Andres M Acosta-Moreno, Carlos Wert-Carvajal, Pilar Ballesteros-Cuartero, Ruben Sánchez-García, Jose R Macias, Rebeca Sanz-Pamplona, Ramon Alemany, Carlos Oscar Sorzano, Arrate Munoz-Barrutia, Esteban Veiga
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2025-03-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/95010
Tags: Add Tag
No Tags, Be the first to tag this record!

Similar Items