Unraveling the power of NAP-CNB’s machine learning-enhanced tumor neoantigen prediction

In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expressio...

Full description

Saved in:
Bibliographic Details
Main Authors: Almudena Mendez-Perez, Andres M Acosta-Moreno, Carlos Wert-Carvajal, Pilar Ballesteros-Cuartero, Ruben Sánchez-García, Jose R Macias, Rebeca Sanz-Pamplona, Ramon Alemany, Carlos Oscar Sorzano, Arrate Munoz-Barrutia, Esteban Veiga
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2025-03-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/95010
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850253446514475008
author Almudena Mendez-Perez
Andres M Acosta-Moreno
Carlos Wert-Carvajal
Pilar Ballesteros-Cuartero
Ruben Sánchez-García
Jose R Macias
Rebeca Sanz-Pamplona
Ramon Alemany
Carlos Oscar Sorzano
Arrate Munoz-Barrutia
Esteban Veiga
author_facet Almudena Mendez-Perez
Andres M Acosta-Moreno
Carlos Wert-Carvajal
Pilar Ballesteros-Cuartero
Ruben Sánchez-García
Jose R Macias
Rebeca Sanz-Pamplona
Ramon Alemany
Carlos Oscar Sorzano
Arrate Munoz-Barrutia
Esteban Veiga
author_sort Almudena Mendez-Perez
collection DOAJ
description In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.
format Article
id doaj-art-4c3eabc2eba64950b0c0bdbfebb6452d
institution OA Journals
issn 2050-084X
language English
publishDate 2025-03-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj-art-4c3eabc2eba64950b0c0bdbfebb6452d2025-08-20T01:57:24ZengeLife Sciences Publications LtdeLife2050-084X2025-03-011310.7554/eLife.95010Unraveling the power of NAP-CNB’s machine learning-enhanced tumor neoantigen predictionAlmudena Mendez-Perez0Andres M Acosta-Moreno1Carlos Wert-Carvajal2Pilar Ballesteros-Cuartero3Ruben Sánchez-García4Jose R Macias5Rebeca Sanz-Pamplona6Ramon Alemany7Carlos Oscar Sorzano8Arrate Munoz-Barrutia9https://orcid.org/0000-0002-1573-1661Esteban Veiga10https://orcid.org/0000-0002-7333-2466Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, SpainCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, SpainCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Departamento de Bioingenieria, Universidad Carlos III de Madrid, Leganés, Madrid, SpainCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, SpainCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain; University of Oxford, Department of Statistics & XChem, Oxford, United KingdomCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, SpainCatalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; University Hospital Lozano Blesa, Aragon Health Research Institute (IISA), ARAID Foundation, Aragon Government, Zaragoza, SpainProcure Program, Institut Català d'Oncologia-Oncobell Program, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, SpainCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, SpainDepartamento de Bioingenieria, Universidad Carlos III de Madrid, Leganés, Madrid, SpainCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, SpainIn this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.https://elifesciences.org/articles/95010vaccinationantigen identificationcancermachine learning-based platform
spellingShingle Almudena Mendez-Perez
Andres M Acosta-Moreno
Carlos Wert-Carvajal
Pilar Ballesteros-Cuartero
Ruben Sánchez-García
Jose R Macias
Rebeca Sanz-Pamplona
Ramon Alemany
Carlos Oscar Sorzano
Arrate Munoz-Barrutia
Esteban Veiga
Unraveling the power of NAP-CNB’s machine learning-enhanced tumor neoantigen prediction
eLife
vaccination
antigen identification
cancer
machine learning-based platform
title Unraveling the power of NAP-CNB’s machine learning-enhanced tumor neoantigen prediction
title_full Unraveling the power of NAP-CNB’s machine learning-enhanced tumor neoantigen prediction
title_fullStr Unraveling the power of NAP-CNB’s machine learning-enhanced tumor neoantigen prediction
title_full_unstemmed Unraveling the power of NAP-CNB’s machine learning-enhanced tumor neoantigen prediction
title_short Unraveling the power of NAP-CNB’s machine learning-enhanced tumor neoantigen prediction
title_sort unraveling the power of nap cnb s machine learning enhanced tumor neoantigen prediction
topic vaccination
antigen identification
cancer
machine learning-based platform
url https://elifesciences.org/articles/95010
work_keys_str_mv AT almudenamendezperez unravelingthepowerofnapcnbsmachinelearningenhancedtumorneoantigenprediction
AT andresmacostamoreno unravelingthepowerofnapcnbsmachinelearningenhancedtumorneoantigenprediction
AT carloswertcarvajal unravelingthepowerofnapcnbsmachinelearningenhancedtumorneoantigenprediction
AT pilarballesteroscuartero unravelingthepowerofnapcnbsmachinelearningenhancedtumorneoantigenprediction
AT rubensanchezgarcia unravelingthepowerofnapcnbsmachinelearningenhancedtumorneoantigenprediction
AT josermacias unravelingthepowerofnapcnbsmachinelearningenhancedtumorneoantigenprediction
AT rebecasanzpamplona unravelingthepowerofnapcnbsmachinelearningenhancedtumorneoantigenprediction
AT ramonalemany unravelingthepowerofnapcnbsmachinelearningenhancedtumorneoantigenprediction
AT carlososcarsorzano unravelingthepowerofnapcnbsmachinelearningenhancedtumorneoantigenprediction
AT arratemunozbarrutia unravelingthepowerofnapcnbsmachinelearningenhancedtumorneoantigenprediction
AT estebanveiga unravelingthepowerofnapcnbsmachinelearningenhancedtumorneoantigenprediction