Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity

Understanding of unconventional superconductivity is crucial for engineering materials with specific order parameters or elevated superconducting transition temperatures. However, for many materials, the pairing mechanism and symmetry of the order parameter remain unclear: reliable and efficient met...

Full description

Saved in:
Bibliographic Details
Main Authors: Jonas B. Profe, Luke C. Rhodes, Matteo Dürrnagel, Rebecca Bisset, Carolina A. Marques, Shun Chi, Tilman Schwemmer, Ronny Thomale, Dante M. Kennes, Chris A. Hooley, Peter Wahl
Format: Article
Language:English
Published: American Physical Society 2024-10-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.6.043057
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850207364002611200
author Jonas B. Profe
Luke C. Rhodes
Matteo Dürrnagel
Rebecca Bisset
Carolina A. Marques
Shun Chi
Tilman Schwemmer
Ronny Thomale
Dante M. Kennes
Chris A. Hooley
Peter Wahl
author_facet Jonas B. Profe
Luke C. Rhodes
Matteo Dürrnagel
Rebecca Bisset
Carolina A. Marques
Shun Chi
Tilman Schwemmer
Ronny Thomale
Dante M. Kennes
Chris A. Hooley
Peter Wahl
author_sort Jonas B. Profe
collection DOAJ
description Understanding of unconventional superconductivity is crucial for engineering materials with specific order parameters or elevated superconducting transition temperatures. However, for many materials, the pairing mechanism and symmetry of the order parameter remain unclear: reliable and efficient methods of predicting the order parameter and its response to tuning parameters are lacking. Here, we investigate the response of superconductivity in Sr_{2}RuO_{4} to structural distortions via the random phase approximation (RPA) and functional renormalization group (FRG), starting from realistic models of the electronic structure. Our results suggest that RPA misses the interplay of competing fluctuation channels. FRG reproduces key experimental findings. We predict a magic octahedral rotation angle, maximizing the superconducting T_{c} and a dominant d_{x^{2}−y^{2}} pairing symmetry. To enable experimental verification, we provide calculations of the phase-referenced Bogoliubov Quasiparticle Interference imaging. Our work demonstrates a designer approach to tuning unconventional superconductivity with relevance and applicability for a wide range of quantum materials.
format Article
id doaj-art-4c0f74ab1ab44c8e8a94ecdadbdb582b
institution OA Journals
issn 2643-1564
language English
publishDate 2024-10-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj-art-4c0f74ab1ab44c8e8a94ecdadbdb582b2025-08-20T02:10:32ZengAmerican Physical SocietyPhysical Review Research2643-15642024-10-016404305710.1103/PhysRevResearch.6.043057Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivityJonas B. ProfeLuke C. RhodesMatteo DürrnagelRebecca BissetCarolina A. MarquesShun ChiTilman SchwemmerRonny ThomaleDante M. KennesChris A. HooleyPeter WahlUnderstanding of unconventional superconductivity is crucial for engineering materials with specific order parameters or elevated superconducting transition temperatures. However, for many materials, the pairing mechanism and symmetry of the order parameter remain unclear: reliable and efficient methods of predicting the order parameter and its response to tuning parameters are lacking. Here, we investigate the response of superconductivity in Sr_{2}RuO_{4} to structural distortions via the random phase approximation (RPA) and functional renormalization group (FRG), starting from realistic models of the electronic structure. Our results suggest that RPA misses the interplay of competing fluctuation channels. FRG reproduces key experimental findings. We predict a magic octahedral rotation angle, maximizing the superconducting T_{c} and a dominant d_{x^{2}−y^{2}} pairing symmetry. To enable experimental verification, we provide calculations of the phase-referenced Bogoliubov Quasiparticle Interference imaging. Our work demonstrates a designer approach to tuning unconventional superconductivity with relevance and applicability for a wide range of quantum materials.http://doi.org/10.1103/PhysRevResearch.6.043057
spellingShingle Jonas B. Profe
Luke C. Rhodes
Matteo Dürrnagel
Rebecca Bisset
Carolina A. Marques
Shun Chi
Tilman Schwemmer
Ronny Thomale
Dante M. Kennes
Chris A. Hooley
Peter Wahl
Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity
Physical Review Research
title Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity
title_full Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity
title_fullStr Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity
title_full_unstemmed Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity
title_short Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity
title_sort magic angle of sr 2 ruo 4 optimizing correlation driven superconductivity
url http://doi.org/10.1103/PhysRevResearch.6.043057
work_keys_str_mv AT jonasbprofe magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity
AT lukecrhodes magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity
AT matteodurrnagel magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity
AT rebeccabisset magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity
AT carolinaamarques magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity
AT shunchi magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity
AT tilmanschwemmer magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity
AT ronnythomale magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity
AT dantemkennes magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity
AT chrisahooley magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity
AT peterwahl magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity