Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity
Understanding of unconventional superconductivity is crucial for engineering materials with specific order parameters or elevated superconducting transition temperatures. However, for many materials, the pairing mechanism and symmetry of the order parameter remain unclear: reliable and efficient met...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Physical Society
2024-10-01
|
| Series: | Physical Review Research |
| Online Access: | http://doi.org/10.1103/PhysRevResearch.6.043057 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850207364002611200 |
|---|---|
| author | Jonas B. Profe Luke C. Rhodes Matteo Dürrnagel Rebecca Bisset Carolina A. Marques Shun Chi Tilman Schwemmer Ronny Thomale Dante M. Kennes Chris A. Hooley Peter Wahl |
| author_facet | Jonas B. Profe Luke C. Rhodes Matteo Dürrnagel Rebecca Bisset Carolina A. Marques Shun Chi Tilman Schwemmer Ronny Thomale Dante M. Kennes Chris A. Hooley Peter Wahl |
| author_sort | Jonas B. Profe |
| collection | DOAJ |
| description | Understanding of unconventional superconductivity is crucial for engineering materials with specific order parameters or elevated superconducting transition temperatures. However, for many materials, the pairing mechanism and symmetry of the order parameter remain unclear: reliable and efficient methods of predicting the order parameter and its response to tuning parameters are lacking. Here, we investigate the response of superconductivity in Sr_{2}RuO_{4} to structural distortions via the random phase approximation (RPA) and functional renormalization group (FRG), starting from realistic models of the electronic structure. Our results suggest that RPA misses the interplay of competing fluctuation channels. FRG reproduces key experimental findings. We predict a magic octahedral rotation angle, maximizing the superconducting T_{c} and a dominant d_{x^{2}−y^{2}} pairing symmetry. To enable experimental verification, we provide calculations of the phase-referenced Bogoliubov Quasiparticle Interference imaging. Our work demonstrates a designer approach to tuning unconventional superconductivity with relevance and applicability for a wide range of quantum materials. |
| format | Article |
| id | doaj-art-4c0f74ab1ab44c8e8a94ecdadbdb582b |
| institution | OA Journals |
| issn | 2643-1564 |
| language | English |
| publishDate | 2024-10-01 |
| publisher | American Physical Society |
| record_format | Article |
| series | Physical Review Research |
| spelling | doaj-art-4c0f74ab1ab44c8e8a94ecdadbdb582b2025-08-20T02:10:32ZengAmerican Physical SocietyPhysical Review Research2643-15642024-10-016404305710.1103/PhysRevResearch.6.043057Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivityJonas B. ProfeLuke C. RhodesMatteo DürrnagelRebecca BissetCarolina A. MarquesShun ChiTilman SchwemmerRonny ThomaleDante M. KennesChris A. HooleyPeter WahlUnderstanding of unconventional superconductivity is crucial for engineering materials with specific order parameters or elevated superconducting transition temperatures. However, for many materials, the pairing mechanism and symmetry of the order parameter remain unclear: reliable and efficient methods of predicting the order parameter and its response to tuning parameters are lacking. Here, we investigate the response of superconductivity in Sr_{2}RuO_{4} to structural distortions via the random phase approximation (RPA) and functional renormalization group (FRG), starting from realistic models of the electronic structure. Our results suggest that RPA misses the interplay of competing fluctuation channels. FRG reproduces key experimental findings. We predict a magic octahedral rotation angle, maximizing the superconducting T_{c} and a dominant d_{x^{2}−y^{2}} pairing symmetry. To enable experimental verification, we provide calculations of the phase-referenced Bogoliubov Quasiparticle Interference imaging. Our work demonstrates a designer approach to tuning unconventional superconductivity with relevance and applicability for a wide range of quantum materials.http://doi.org/10.1103/PhysRevResearch.6.043057 |
| spellingShingle | Jonas B. Profe Luke C. Rhodes Matteo Dürrnagel Rebecca Bisset Carolina A. Marques Shun Chi Tilman Schwemmer Ronny Thomale Dante M. Kennes Chris A. Hooley Peter Wahl Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity Physical Review Research |
| title | Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity |
| title_full | Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity |
| title_fullStr | Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity |
| title_full_unstemmed | Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity |
| title_short | Magic angle of Sr_{2}RuO_{4}: Optimizing correlation-driven superconductivity |
| title_sort | magic angle of sr 2 ruo 4 optimizing correlation driven superconductivity |
| url | http://doi.org/10.1103/PhysRevResearch.6.043057 |
| work_keys_str_mv | AT jonasbprofe magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity AT lukecrhodes magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity AT matteodurrnagel magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity AT rebeccabisset magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity AT carolinaamarques magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity AT shunchi magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity AT tilmanschwemmer magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity AT ronnythomale magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity AT dantemkennes magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity AT chrisahooley magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity AT peterwahl magicangleofsr2ruo4optimizingcorrelationdrivensuperconductivity |