High-Performance Triboelectric Nanogenerator with Double-Side Patterned Surfaces Prepared by CO<sub>2</sub> Laser for Human Motion Energy Harvesting
The triboelectric nanogenerator (TENG) has demonstrated exceptional efficiency in harvesting diverse forms of mechanical energy and converting it into electrical energy. This technology is particularly valuable for powering low-energy electronic devices and self-powered sensors. Most traditional TEN...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-10-01
|
| Series: | Micromachines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-666X/15/11/1299 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The triboelectric nanogenerator (TENG) has demonstrated exceptional efficiency in harvesting diverse forms of mechanical energy and converting it into electrical energy. This technology is particularly valuable for powering low-energy electronic devices and self-powered sensors. Most traditional TENGs use single-sided patterned friction pairs, which restrict their effective contact area and overall performance. Here, we propose a novel TENG that incorporates microwave patterned aluminum (MC-Al) foil and microcone structured polydimethylsiloxane (MC-PDMS). This innovative design utilizes two PMMA molds featuring identical micro-hole arrays ablated by a CO<sub>2</sub> laser, making it both cost-effective and easy to fabricate. A novel room imprinting technique has been employed to create the micromorphology of aluminum (Al) foil using the PMMA mold with shallower micro-hole arrays. Compared to TENGs with flat friction layers and single-side-patterned friction layers, the double-side-patterned MW-MC-TENG demonstrates superior output performance due to increased cone deformation and contact area. The open-circuit voltage of the MW-MC-TENG can reach 141 V, while the short-circuit current can attain 71.5 μA, corresponding to a current density of 2.86 µA/cm<sup>2</sup>. The power density reaches 1.4 mW/cm<sup>2</sup> when the resistance is 15 MΩ, and it can charge a 0.1 μF capacitor to 2.01 V in 2.28 s. In addition, the MW-MC-TENG can function as an insole device to harvest walking energy, power 11 LED bulbs, monitor step speed, and power a timer device. Therefore, the MW-MC-TENG has significant application potential in micro-wearable devices. |
|---|---|
| ISSN: | 2072-666X |