Modified Kibria–Lukman Estimator for the Conway–Maxwell–Poisson Regression Model: Simulation and Application
This study presents a novel estimator that combines the Kibria–Lukman and ridge estimators to address the challenges of multicollinearity in Conway–Maxwell–Poisson (COMP) regression models. The Conventional COMP Maximum Likelihood Estimator (CMLE) is notably susceptible to the adverse effects of mul...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/5/794 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study presents a novel estimator that combines the Kibria–Lukman and ridge estimators to address the challenges of multicollinearity in Conway–Maxwell–Poisson (COMP) regression models. The Conventional COMP Maximum Likelihood Estimator (CMLE) is notably susceptible to the adverse effects of multicollinearity, underscoring the necessity for alternative estimation strategies. We comprehensively compare the proposed COMP Modified Kibria–Lukman estimator (CMKLE) against existing methodologies to mitigate multicollinearity effects. Through rigorous Monte Carlo simulations and real-world applications, our results demonstrate that the CMKLE exhibits superior resilience to multicollinearity while consistently achieving lower mean squared error (MSE) values. Additionally, our findings underscore the critical role of larger sample sizes in enhancing estimator performance, particularly in the presence of high multicollinearity and over-dispersion. Importantly, the CMKLE outperforms traditional estimators, including the CMLE, in predictive accuracy, reinforcing the imperative for judicious selection of estimation techniques in statistical modeling. |
|---|---|
| ISSN: | 2227-7390 |